Anomalous Transport in Complex Networks

Shlomo Havlin

 Reuven Cohen Tomer Kalisky Shay Carmi
 Bar-Ilan University

 Edoardo Lopez Gene Stanley
 Boston University

 "Anomalous Transport in Scale-free Networks", López, et al, PRL (2005)

Important Function of Networks -- Transport

- a) Transport: emails, viruses over Internet, epidemics in social networks, passengers in airline networks, etc.
- b) Main past focus: studies of *static properties* of networks.
 Robustness, shortest paths, degree distribution, growth models, etc.
- c) No general theory of transport properties on networks. Some results-not yet a global picture.

Random Graph Theory

- Developed in the 1960's by Erdos and Renyi. (Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960).
- Discusses the ensemble of graphs with N vertices and M edges (2M links).
- Distribution of connectivity per vertex (degree distribution) is Poissonian (exponential), where k is the number of links :

$$P(k) = e^{-c} \frac{c^{\kappa}}{k!}, \quad c = \langle k \rangle = \frac{2M}{N}; p_c = 1 - 1 / \langle k \rangle; \text{MF critical exponents}$$

In Real World - Many Networks are non-Poissonian

Erdos-Renyi (1960)

Barabasi-Albert (1999)

New Type of Networks

Exponential Network

Scale-free Network

Networks in Physics

70 Java Applet Window

Fig. 1. The distribution function of connectivities for various large networks. (**A**) Actor collaboration graph with N = 212,250 vertices and average connectivity $\langle k \rangle = 28.78$. (**B**) WWW, N = 325,729, $\langle k \rangle = 5.46$ (6). (**C**) Power grid data, N = 4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor} = 2.3$, (B) $\gamma_{www} = 2.1$ and (C) $\gamma_{power} = 4$.

Barabasi and Albert Emergence of scaling in random networks Science 286, 509-512 (1999).

Internet Network

Faloutsos et. al., SIGCOMM '99

Metabolic Network

Nodes: chemicals (substrates)

Links: bio-chemical reactions

Jeong, Tombor, Albert, Barabasi, Nature (2000)

Metabolic network

Organisms from all three domains of life are scale-free networks!

Distance almost constant does not depend on N Jeong, Tombor, Albert, Barabasi, Nature (2000)

Many Social networks are also found to be scale free

New models – based on preferential attachment (Barabasi, 2000) Anomalous Mean Distance in Scale Free Networks

$$P(k) \sim k^{-\lambda}$$

$$\ell = const. \qquad \lambda = 2$$
Ultra
Small
World
$$\ell = \log \log N \qquad 2 < \lambda < 3$$

$$\ell = \frac{\log N}{\log \log N} \qquad \lambda = 3 \qquad \text{(Bollobas, Riordan, 2002)}$$
Small World
$$\ell = \log N \qquad \lambda > 3 \qquad \text{(Bollobas, 1985)} (Newman, 2001)$$

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) Chap.4Confirmed also by: Dorogovtsev et al (2003), Chung and Lu (2002)

More anomalies: Percolation on Scale Free

General result:

Cohen et al. Phys. Rev. Lett. 85, 4626 (2000); 86, 3682 (2001); 91, 168701 (2003)

Efficient Immunization Strategie: Acquaintance Immunization

SF new topology→critical exponents are different and anomalous (not regular MF)! THE UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY REACHED

Scale Free is **not** sufficient: Fractal and Non Fractal Networks **Box counting method**

 \blacktriangleright Generate boxes where all nodes are within a distance ℓ

> Calculate number of boxes, $n(\ell)$, of size ℓ needed to cover the network

➢ We obtain for WWW, social networks, cellular networks, etc.

 $N_B(\ell) \Box \ell^{-d_B}$ or $M_B \Box N / N_B \sim \ell^{d_B} \quad 2 < d_B < 5 \implies \text{Self similarity}$

Chaoming Song, SH, Hernan Makse, Nature. 433, 392 (2005); cond-mat/0507216

Renormalization of WWW network with $\ell_B = 3$

SOME REAL NETWORKS ARE FRACTALS AND SOME NOT!!

Important Function of Networks -- Transport

- a) Transport: emails, viruses over Internet, epidemics in social networks, passengers in airline networks, etc.
- b) Main past focus: studies of *static properties* of networks.
- c) No general theory of transport properties on networks. Some important results-not yet a global picture.

Transport in Complex Networks Transport on regular networks and fractals:

Diffusion on Fractals and Disordered Systems, Cambridge Univ. Press (2000)

Transport in Complex Networks

Some important results-not yet a global picture:

- 1. Bolt and ben-Avraham (NJOP, 2005): transit time faster as the SF network grows; walks are recurrent despite the infinite dimension.
- 2. Lasaros Gallos (PRE, 2004): super diffusion $< \ell^2 > \square n^{2/d_w}$ with $d_w < 2$ depending on λ numerically.
- 3. Noh and Rieger (PRL, 2004): exact expression for MFPT, $p(\tau) \Box \tau^{-(2-\lambda)}$
- 4. Lopez et al (PRL, 2005): Broad distribution of conductances and diffusion constants (depending on degrees)– heterogeneous transport of SF networks

Anomalous Transport in Complex Networks

Origin of power law?

Strong correlations between

conductance and degree of nodes

 $P(G | k_A, k_B)$ - distribution of G given k_A and k_B G^* - most probable conductance

* Large k_A and k_B dominate the high conductanc e regime * Many parallel paths reduce dramatically the conductance

Origin of power law?

$$\Phi(G) = \Phi(k_B) = P(k_B) \int_{k_B}^{\infty} P(k_A) dk_A \approx k_B^{-2\lambda + 1}$$

Thus $\Phi(G) \propto G^{-g_G}$ where $g_G = 2\lambda - 1$ Supported by simulations

Simulations – scale free

Scaling laws of resistance and diffusion for fractal and non-fractals SF networks

$$R(l;k_{1},k_{2}) = l^{\xi}F(\frac{k_{1}}{l^{d_{k}}},\frac{k_{2}}{l^{d_{k}}})$$
$$t_{walk}(l;k_{1},k_{2}) = l^{d_{w}}D(\frac{k_{1}}{l^{d_{k}}},\frac{k_{2}}{l^{d_{k}}})$$

In regular homogeneous fractals D and F are constants

Conclusions and Applications

Scale Free - $p(k) \square k^{-\lambda}$:

- * Anomalous properties- d=loglog N, diff. percolation
- * Rich topology: Fractal-Nonfractal real networks
- * Generalization of ER: $\lambda > 4$ ER, Infinite dimension, regular MF

Anomalous Transport:

- * Broad distribution of diffusion constants or conductances
- * Heterogeneous {Dij} depending on nodes (i,j)-mainly on degreedue to heterogeneous topology.

Applications:

- * Optimize topology of networks against various types of failures
- * Optimize transport, searching and navigating in networks

Simple Physical Picture

• Network can be seen as series circuit.

•Conductance G^* is related to node degrees k_A and k_B through a network dependent parameter c.

•To first order (conductance of "transport backbone" >> ck_Ak_B)

$$G^* = c \frac{k_A k_B}{k_A + k_B}$$