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Abstract

Motions of charged defects in ionic solids, including glassy ionic conduc-
tors, defective crystals and composite materials, imply slow relaxation pro-
cesses, which are observable within a wide range of timescales larger than mi-
croscopic (vibrational) times. These processes manifest themselves in numer-
ous dynamical probes, like ac—conductivity, nuclear spin—relaxation, quasielas-
tic neutron scattering and mechanical relaxation. The present theoretical un-
derstanding of the corresponding response functions is reviewed. Stochastic
models based on ion hopping are the most natural approach for systems with
structural disorder on microscopic length scales, but more coarse-grained,
phenomenological schemes are addressed as well. Macroscopically inhomoge-
neous systems and interfacial problems are modeled by random impedance
networks.

Generally, non—exponential relaxation gets enhanced when Coulomb inter-
actions between ions are taken into account. This is demonstrated by large—
scale Monte Carlo simulations of disordered lattice gases for ion diffusion and
is supported further by new results on random dipolar systems in the context

of the “nearly constant dielectric loss response”.

1 Introduction

The understanding of mechanisms of atomic migration through solids is of funda-
mental importance in many branches of materials science. Details of the migration
process at different length— and timescales can be studied by various experimental
techniques like tracer diffusion, electrical dc— and ac—conductivity, nuclear magnetic
resonance, mechanical relaxation, ultrasonic attenuation and neutron scattering. In

solid electrolyte materials, characterized by long-range ionic transport, numerous



measurements have revealed rich dynamical behavior [1,2], showing that a simple
random-walk picture of the ionic motion with Gaussian statistics is inappropriate.
Indeed, the dynamics are characterized by a subdiffusive motion on intermediate
time scales and by an associated non—exponential temporal decay of the relevant
relaxation or correlation functions. One reason for the strange dynamics is the in-
trinsic structural disorder, caused by a broad distribution of jump probabilities.
A second reason are collective motions due to ion—ion interactions, which consist
of short-range chemical interactions and long-range electrostatic interactions. The

latter may be non—negligible even in dilute samples.

Even in comparatively simple materials like substitutionally disordered crystals
the defect dynamics can be quite unexpected. As an example, consider the case
of monovalent salts doped with divalent cations, where charge transport is domi-
nated by a vacancy mechanism. Over a wide frequency-range, their ac-conductivity
increases nearly linearly with frequency, o'(w) ~ A(T)w, with an “intensity”
A(T) that depends only weakly on temperature, provided the temperature is near
or below room temperature. For random defect motion with Gaussian statistics,
a conductivity being independent of frequency would rather be expected. Since
X"(w) x o'(w)/w, a behavior ¢'(w) x w is equivalent to a frequency—independent
dielectric loss. In fact, this “nearly constant loss” (NCL) behavior seems to be “uni-

versally” observed in disordered systems at high frequencies and/or low temperatures
[4-6].

More complex systems, such as glassy and polymeric ion conductors are a sub-
ject of continuing research both from the structural and the dynamic point of view.
In the network glasses, e.g. in alkali-doped silicate or borate glasses, ions diffuse
in a topologically disordered network. The coupling of the ionic motions to the
network degrees of freedom and the interactions with the counterions are major
issues in explaining peculiarities in their transport properties. These include anoma-
lous composition—dependent dc—transport properties and Haven ratios in single—ion
glasses [7] and the mixed—alkali effect in glasses with two species of migrating ions
[8]. These stoichiometric effects, however, will not be our major focus here. Rather

we will concentrate on the dispersive transport properties.

The frequency—dispersion of the dynamic conductivity in these complex materials
follows a common pattern. Above some cross—over frequency w,(7) it passes from

the thermally activated dc—plateau o(w) =~ 04c(T), with 04c(T") o w,(T), to a regime



where

o' (w) oc wh (1)

with exponents n, ~ 0.6 to 0.7 (the so—called Jonscher—type response [9,10]). At
even higher frequencies, w > wyer(T) > w,(T') up to about 100 GHz, NCL-behavior
is recovered. Typically, for temperatures T < 10% K, 4. and even wxerL(T) become
too small to be observable so that the NCL-response dominates the spectrum and
extends over many orders of magnitude [4]. It is worth to note that the distinction
between the Jonscher regime and NCL regime is often not very sharp when consid-
ering the spectrum at a fixed temperature: One may describe the dispersive part
of a conductivity isotherm also by a slowly increasing exponent n(w) that at very
high w becomes close to one. For a clear distinction it is preferable to look at the
conductivity in the (w,T)-plane: In the Jonscher regime at small w and high T the
conductivity is thermally activated, while in the NCL regime at large w and low T'

its temperature dependence is very weak.

Albeit cross-correlations between different ions are important, the basic mecha-
nisms governing the electrical response can essentially be traced back to the motion
of single ions, i.e. the time-dependent mean-square displacement (r?(¢)) of a tracer
ion. This does not mean, however, that ion-ion interactions can be neglected, since
they strongly affect (r?(t)). Moreover, the basic qualitative behavior of (r?(t)) is
reflected also in other dynamical probes. It is not surprising therefore, that the com-
mon features characterizing the conductivity have a counterpart e.g. in nuclear spin
relaxation (NSR). On the low-temperature (high-frequency) side of the maximum

in the NSR-rate 7', the spectral function is non-Lorentzian such that [11]
T, H(w) o w™srE—2 (2)

with an exponent ngrr > 0. The approximate relationship

w2

kpTo(w) o () (3)

suggests that in the NCL-regime the effective exponent ngrr approaches unity.
Mechanical relaxation experiments are qualitatively described by a frequency—

dependent modulus
kBTO' (W)
“ —_—

Nll(w) »

(4)
Power—law dependencies of N”(w) as well as non—Lorentzian line shapes in quasi—

elastic neutron scattering confirm the idea of slow relaxation and complex dynamics

as an intrinsic property of ion—conducting glasses.



So far we considered ion diffusion as a bulk property. Besides this, a variety of
heterogeneous (macroscopically disordered) materials are known where interfacial
transport dominates. Much studied examples are composite ionic conductors with
heterogeneities on length scales of 1um [12]. A somewhat analogous situation on
much smaller length scales occurs in nanocrystalline conductors consisting of essen-
tially insulating nano—particles and strongly disordered, highly conducting regions

in between [13].

Finally, we address diffusion across interfaces as a problem of prime importance
with respect to the performance of electrochemical cells. Interfacial roughness can
lead to anomalous behavior in the dynamical impedance Z(w), again in the form
of power-laws, Z"(w) =~ w™". In this case the exponent 7 depends on the degree of

roughness of the interface [14].

The primary aim of theories in this area is to understand the essential mech-
anisms of these “quasi—universal” patterns of behavior, observable in many differ-
ent substances. Appropriate models need to introduce some coarse-graining, which
makes them independent of many details in the microscopic structure and chemical
bounding. However, in contrast to a purely phenomenological description, the mod-
els to be discussed in this paper do reflect the microscopic migration steps of ions,
a specific local structure, and ion—ion interactions. To include all of these aspects
it is most convenient to employ a stochastic lattice gas as a general frame. In that
model, particles perform stochastic moves among sites of a discrete lattice. Natu-
rally these lattice sites represent the set of interstitial sites preferred by the ions in a
given material. During an elementary hop, affected by thermal activation, the ions
have to surmount some saddle point energy, which depends on the specific atomic
environment. Because of ion—ion interactions, the effective saddle point energy and
hence the hopping probability contains a contribution depending on the configura-
tion of nearby ions. Such effects are the essential ingredients in the description of

many—particle hopping and structural disorder considered here.

In a more refined description, the lattice gas approach would still be useful. The
lattice can then be regarded as a discretization of continuous space, with a mesh size
significantly smaller than interatomic distances. Now, a realistic energy landscape
resulting, for example, from molecular dynamics simulation, can be translated into
discrete site energies. In this way, the capability of lattice Monte Carlo simulations
in predicting the long-time dynamics is linked to microscopic structural information.

At present, works on such “multi-scale” treatments are only at their beginning. Most



of our later discussion is therefore focused on the above-mentioned, more traditional

interpretation of the lattice gas.

2 Common representations of experimental data

Different suggestions were made in the past to characterize the dielectric response of
complex ionic conductors in the Jonscher regime. It is helpful to summarize some of
these suggestions here for later reference. The perhaps simplest description is that

suggested by Jonscher [9,10] (sometimes, in solid state ionics, also attributed to
Almond, Duncan and West [15]),

(W) = gac(T){1 + [iw/w, (T)]""} (5)

with the Jonscher exponent n, ~ 0.6 — 0.7, see eq. (1). It has been found that
w,(T) is proportional to the dc—conductivity, w,(T") o 04c(T), which implies that
the activation energy FE,. in the dispersive regime is reduced relative to the dc
activation energy FEy. by a factor (1 — n,), i.e. E,e = (1 — n,)FEqg.. Even more
striking, Barton [16], Nakijama [17] and Namikawa [18] independently verified for

many materials that
W — Odc
7= PAe

where p is a constant close to one, and Ae is the dielectric strength, i.e. the difference

A€ =€ — €x (6)

between the static and high frequency dielectric constants €5 and €., respectively.

Equation (6) is known as the BNN relation.

As already mentioned in the Introduction, the power law in (5) with a fixed
exponent n is not a very accurate description when considering broad frequency
regimes extending beyond 100 MHz at room temperature. More generally, one may
therefore write

0(w) = oac f(w/we(T)), (7)
where f is a scaling function and w,(T') is given by the BNN relation (6). Recently
it was shown that this scaling ansatz gives a very good description for single ionic
glasses [19,20]. In particular it was observed that the form of the scaling function
depends only very weakly on the ionic concentration and even only weakly on the
specific glass composition. It thus resembles a “quasi—universality” of conductivity
spectra of single ionic glasses, albeit differences in the spectra appear upon detailed

inspection [21].



It has been argued in [22] that if scaling of the spectra occurs, it must be of
the BNN type. To this end it was assumed that the scaling is valid strictly down to
the lowest frequencies. Under this assumption one can consider the low frequency
expansion of the conductivity, which then must be of the form &(w)og. ~ 1—iAw/wqe
with A being real (since 6*(w) = 6(—w)). Accordingly, one would find é(w) — €5 =
i6(w)/€eow ~ iogc/€ow + Aoge/€ow, for w — 0, which implies Ae = Aoge/€owy, i.€.
the BNN relation.

However, the scaling in physical systems has typically to be understood in some
limiting sense. It is well possible that a linear behavior of &(z,7T) for small z is
not in contradiction with the existence of a scaling function whose characteristic
frequency is not connected to the low-frequency expansion. For example, one can
have 6(w)/oqc ~ 1 — iAw for w < wy(T), while 6(w)/c4c ~ f(w/ws(T)) for w >
wo(T'), where wy(T) is a cutoff frequency specifying the validity of the low-frequency
expansion (which e.g. can be defined precisely by comparing the second term in
this expansion with the first term). If now wy(7T)/w,(T) — 0 for T — 0, then
the region w < wy(T') becomes irrelevant on the scale w,(T) for low 7. When one
sets w = wwy with u fixed, then always limy_o f(uwo(T)/w,(T)) = f(0) = 1.
For experiments (where always T' > 0) this means that the part w < wy(T") of the
spectrum practically disappears within the dc-plateau, when the spectrum is plotted
on the frequency scale w, (note in particular that w, becomes very small for low T,
so that wy might become extremely small, i.e. the region w < wq(T) may not be

resolvable at all).

An alternative way of representing data is by means of the electric modulus

M (w) = ﬁ () — e = i)

(8)

By linear response theory this modulus can be expressed in terms of a normalized
relaxation function ¢(t) with ¢(0) = 1, that describes the decay of an electric field
E(t) inside the sample after an external field is switched off, E(t) = E(0)¢(t). For

materials with a finite dc-conductivity that relation is given by

€ow

~

N (w) = —iwM, /0 it o) e, (9)

1 __
= Odc/€0€cos

where 7 = [ ¢(t) dt is the mean relaxation time. We note that the Maxwell relation

does not provide deeper insight into the BNN relation, since an assumption 7! o w,

where My, = 1/ey. Equations (8,9) imply the “Maxwell relation” 7~

would require justification (note that even a frequency-independent conductivity

yields a peak in —M" at a “characteristic frequency” oq./€p€x0)-

6



Reasonable fits of modulus spectra in the Jonscher regime are obtained by as-

suming a stretched exponential relaxation function

$(t) = exp[—(t/Ticww) ™™, (10)

often referred to as the Kohlrausch—Williams—Watts (KWW) function [23,24]. As
a rule of thumb, the conductivity exponent n, is related to Sxww by n, ~ 1 —
Prww (for numerical relationships, see e.g. [25]). It should be noted that the KWW
relaxation function has a non—analytic behavior at time ¢ = 0, which, however,
poses no real problem in practical situations, since the Jonscher regime terminates
at large w. A problem of practical importance, however, can arise from the fact that

the modulus M (w) contains €y, in a non-additive manner. This might complicate

the interpretation of the spectra.
For completeness, let us finally mention that for complex materials with bound
charges (o4. = 0) dielectric spectra in the Jonscher regime are often represented by

€s — €0
(1 — (in)OéCC)/BCD

(11)

€(W) — €00 =

which is a power—law—type generalization of the Debye behavior, the latter being
recovered for aqgc = Bep = 0. The non—Debye behavior is accounted for by exponents
acc, Bep with values between zero and one, where different cases are distinguished

according to various suggestions:

acc 70 Bep =0 Cole—Cole formula [26]
acc =0 fep #0  Cole-Davidson formula [27]
acc #0  Pep #0  Havriliak-Negami formula [28]

Expressions of type (11) were used also to fit dielectric spectra of conducting ma-
terials by adding to these formulae the contribution ioy./€yw coming from the dc-
conductivity. While the Cole—Cole formula yields symmetric arcs in a Cole—Cole
plot of ¢/ (w) versus o”(w), the arcs corresponding to the Cole-Davidson formula are

skewed.



3 Single—Particle Approaches

3.1 Superposition of Debye processes

A non—Debye relaxation function ¢(¢) may in principle be obtained by a superposi-

tion of simple exponentials

b(1) = /0 i g(r) e (12)

The idea of such a concept is that the overall relaxation in a disordered structure
originates from independent parallel Debye processes occurring in well-separated
regions of the sample. The rates vary from region to region and have a weight
(“spectral density”) ¢(T"). Basically, however, this concept replaces the problem of
explaining ¢(¢) by the problem of explaining g(7). Hence no insight into the nature
of the relaxation process is gained unless those separated regions are identified and

g(T') is explained by further modeling.

It is worth to note, nevertheless, that for the Kohlrausch function (10) the spec-

tral density is

€—100 d
9(1) = rew L(Tre) s L{u) = / 95 plus — s50) (13)

Cico 2T

where L(u) is the asymmetric Lévy stable law of index (Sxww, 1) (see e.g. [29]). This
stable law is a generalization of the Gaussian distribution for a sum of independent
and identically distributed (iid) random variables with finite variance. In fact, L is
the limit distribution of a sum of a large number N of iid positive random variables

['; > 0 with a probability density
wF(F) ~ [ Brww (14)

for I' — oo [30]. Note that for 0 < Sxww < 1, ¢r(I') has no first moment, i.e. a mean
relaxation rate does not exist. Let us mention also there should exist a cutoff of
the power law (14) at large I" when reaching vibrational frequencies, w 2 100GHz.
This would lead to a modification of the Kohlrausch function at small times. Still,
however, our understanding of the non-Debye relaxation is not improved as long as

such power laws cannot be justified further.



3.2 Continuous—Time-Random—Walk (CTRW) Model

The CTRW model was set up by Montroll and Weiss [31] and further developed
by Scher and Lax [32] to describe conductivity spectra in disordered systems. In
that model, one particle performs jumps j with random displacements @; at random
times t;, 5 = 1,2,... The distribution of displacements has a finite first moment
((@) = 0 in the absence of a drift) and a finite second moment (a?) < co. The times
7; = t; —tj—1 between successive jumps are randomly distributed according to some
waiting time distribution (WTD) ¢.(7) and, in the separable CTRW model, the 7;

are uncorrelated with the d;.

The Laplace transform of the mean square displacement (r?(¢)) of the particle
can then be expressed in terms of the Laplace transform v, (z) = [ () e dr
of the WTD [32],

#2(5)) = (]2 @ZT(Z)
= ar

Given the mean square displacement, the frequency-dependent diffusion coefficient

(15)

is )
~ Z ~2

D(z) = 3 (7%(2)) , D(w) = el_igloﬁ(_iw +€). (16)
and the conductivity follows from the Nernst—Einstein relation,
ne? .
o) = D) (17)

When assuming a power law decay ¢, (1) ~ 772" for large 7, it follows that
1 —tp,(2) ~ 2" for small z and hence, from eqs. (15,16), o(w) ~ w" for small
w. More generally, one might map a given conductivity spectrum onto a WTD by
(15,16).

However, apart from the question of explaining the origin the WTD one has
to keep in mind that the formulae (15,16) do not apply to a stationary situation
and hence cannot be used for ionic transport in solids, when the density of ions
in phase space is in equilibrium. In a stationary situation, the WTD for the first
jump of the particle is h(71) o< [ ¢-(71 + 7) dr due to the fact that the time instant
of the jump preceeding the first jump is not known. Taking care of the WTD for
this first jump leads to a frequency-independent conductivity o = ne?(1?)/6kgT (1),
where (7) is the first moment of ¢, (7) [33]. That the CTRW in the stationary case
yields a constant conductivity was first pointed out by Tunaley [34] for the separable
CTRW. A thorough discussion including generalized CTRW’s can be found in [35].

9



Physically, the result is not surprising, since the CTRW model for the stationary
situation does not generate velocity correlations (correlations between the directions
of the jumps). It hence yields a mean square displacement growing strictly linearly

with time, corresponding to a frequency-independent conductivity.

3.3 Random Barrier Models

A picture often employed for describing transport in disordered materials is the jump
motion of a particle in a random energy landscape. A particular simple model is the
random barrier model (RBM), where iid random variables V;; > 0 are assigned to
the bonds (7, j) of a lattice with spacing a, while the lattice sites are energetically

equivalent. A particle performs a random walk in this lattice with jump rates
wi,j =V exp(—V;-,j/kBT) (18)

where v is an attempt frequency. The probability p;(¢) to find the particle at site i

at time ¢ obeys the master equation

dp;

d—tz = Z wijlp;(t) — ()] pi(0) = dip, (19)
jNNi

where the sum runs over all nearest neighbors (NN) of site .

To calculate the thermally and disorder averaged mean square displacement
(r?(t)) of the particle, various approximation schemes were developed. For smooth
distributions ¢y (V'), a powerful tool is the effective medium approximation (EMA)
[36,37], or its “lattice variant”, the coherent potential approximation (CPA) [38],
and their various generalizations [39-43]. The idea of the EMA is to replace the ran-
dom walk in the disordered environments by a random walk in an ordered effective
medium, where the time correlations induced by the disorder are accounted for by a
memory function (¢). The master equation in the associated effective medium thus
reads

dp™ f o N T EMA( L EMA oA
e N Rl O R O T R T

jNNi
or, in Laplace space,
PP = 00 = (=) Y [B(2) = B (). (21)
jNNi
The memory function 4(z) is determined by the requirement that on average the

replacement of one bond in the effective lattice by a bond drawn from (V') has

10



no effect on the solution of eq. (19). The corresponding perturbation series can
be summed up to all orders for the “single-bond EMA” and yields the following

self-consistency equation for the memory function in a d-dimensional lattice

Y(z) —w B
<dﬁ(2) — [3(2) = w][1 = 2Goo(2)] > =0. (22)

Here w = vexp(—V/kgT), (...) denotes an average over with respect to ¢y (V'), and

G ; is the lattice Green function. For the d-dimensional cubic lattice,

-

™ ddk eik-(d‘jf[ik)
Girl(z :/ =, 23
il2) — (277)dz+§(z)x(k) (23)

where y(k) = 2[d — Zzzl cos k|, and @, denotes the position of site j. After solving
eq. (22) for 4(z), the mean square displacement of the particle is given by

(2 = 1D (24)

and the conductivity follows from eq. (16).

The EMA is a good approximation of the conductivity at high frequencies but a
serious problem is that it fails to predict the activation energy correctly. The reason
for this failure is that the activation energy FEjy. is determined by a percolation
phenomenon [44]. At low temperatures the particle diffuses along the paths in the
lattice where the barriers are lowest. The largest barrier Vi, to be surmounted is

given by the threshold for bond percolation [45],

/0 T W e (V) = e (25)

and yields the activation energy Fq. = Viax-

In order to cope with the problem, Dyre and Schrgder suggested [46,47] to
truncate the distribution at Viax, i.e. ¥y (V) = Ygunc(V) o ¥y (V)0(Viax — V)
and to deal with the restricted geometry of the percolation path by using the EMA
in d = 1. They called this method the “percolation path approximation” (PPA).
Comparison with Monte—Carlo simulations [46] shows surprisingly good agreement
in view of the fact that the complicated fractal topology of the percolation paths is

ignored.

Recently a formal extension of the PPA was proposed [22] to account for the
scaling features of ionic glasses in a quantitative manner (see Sec. 2). In this extension

the dimension d in eqs. (22,23) is replaced by a “fractal dimension dy” and then, in

11



the sprit of the PPA, the self-consistency equation is evaluated with the truncated
distribution ©ync(V') in order to determine ¥(z). This procedure, however, should
be regarded only as a fitting method, since the Green function for diffusion on
the percolation path is very different from (23) and has a much more complicated
structure [48]. Irrespective of these various approximations for the RBM, it should
be noted that the RBM in itself does not account for the variations of activation

energies with ionic composition as they are found in experiment.

3.4 Random Site Energy Models

Somehow complementary to hopping models with random barriers one can consider
random site energies. The variation of site energies is an important aspect, since the
ions encounter quite different local environments in a disordered material. While the
Coulomb potential of the immobile counterions gives rise to site energies being cor-
related over large distances, local structural inhomogeneities are typically of shorter
range. In strongly disordered systems one may regard the local structural fluctua-
tions to be dominant and consider a lattice model with uncorrelated site energies
¢; drawn from a distribution t.(€) as a starting point. By contrast to the barrier
models it is important to take into account that two ions cannot occupy the same
site. This is because the Fermi statistics hinders the ions to accumulate at the sites
with lowest energies at low temperatures. In principle one is thus forced to treat a

many particle problem, an issue considered further in section 5.

However, as it is known from electron hopping systems [49], for sufficiently low
concentration of charge carriers one can map the many-body dynamics onto an
effective one—particle dynamics. This is achieved by treating the site exclusion caused
by the other particles in a mean—field type manner. The master equation analogous
to eq. (19) then reads
dp; _ N
= D wia(L = fopi(t) —wiz(1 = f)piD)],  pi(0) = dip, (26)

jNNi
where f; = f(&;) = {exp[(e; — p)/kT] + 1}~ is the Fermi equilibrium occupation.
The jump rates w;; from site i to j obey detailed balance, w; ;exp(—e;/kgT) =
wj;exp(—e;/kpT), which ensures that pi? = f; is a stationary solution of eq. (26).
Note that this solution depends on the ionic concentration n via the chemical po-
tential 4 that is determined by the condition [ dec(€)f(e) = na.

The effective one—particle master equation (26) is more complicated than the

12



corresponding one (19) for the random barrier model, since the jump rates w; ;(1 —
f;) are not symmetric. In particular the standard EMA scheme discussed in the
previous subsection cannot be applied. Formal extensions of the EMA to asymmetric
rates were considered previously, in particular in the context of electron transport
in amorphous semiconductors, see e.g. [50]. However, it is only recently that the
reliability of the EMA in systems with site energy disorder has been investigated in
detail. One of these studies focuses on the problem of quantum electron transport
[51]. Another study deals with the problem of collective diffusion in classical hard-

core lattice gases [52], when the transition rates depend on the initial site only.

Based on an EMA the problem given by eq. (26) was treated in [53,54]. By
introducing symmetrized jump rates wy; = wiifi(l— f;) = wj,; and the rescaled

probabilities ¢;(t) = p;(t)/ fi eq. (26) can be rewritten as

£ 90 S () — ). (27)

jNNi

For a given energy ¢; of the final site, this master equation corresponds to a random
walk with symmetric transition rates wj ;. Hence, analogous to the standard EMA,
an ordered effective medium is introduced for each class of random walks ending at
the same energy ¢ in time ¢. For this class of random walks the memory function

7(z, €) depends on the final energy and is determined self-consistently by

F(z,€) — ws(e, €) B
<M@m%ﬁﬂ%d—ﬂﬂaﬂm—wﬂdGM%m>a_m (28)

where (...)e = [de'ype(¢') ... denotes an average over the distribution t.(¢') of site

energies €. We note that the transition rates along two neighboring bonds in the real
system are usually correlated, since they have one site energy in common (unless
w(e;, €;) depends on €; or €; only). These correlations are neglected in the single-
bond EMA discussed here, but may be incorporated in extended cluster-type EMA

versions.

The conductivity finally follows by averaging over the final energy ¢, where each
class of random walks with a terminal site energy € is weighted by f(e). One obtains

for the conductivity [53, 55]

62

o(2) = m(ﬁ(zaﬁ)% (29)

Equations (28,29) yield the correct high-frequency limit of the conductivity but fail

in the zero-frequency limit for the same reasons as the EMA in the random barrier

13



model. Again one may correct this failure by invoking a critical percolation path
argument [53]. We will not further discuss this issue here but note only that even
with these corrections Monte-Carlo simulations do not give satisfying agreement
with the EMA. The task to develop analytical tools to understand the dispersive

transport in lattices with site energy disorder is still demanding.

Nevertheless, it is interesting to note that the EMA predicts a BNN scaling of
conductivity spectra [54], where now also the dependence of the activation energy
on the ionic concentration can be incorporated. With respect to simulations it was
shown that a Fermi lattice gas model with Gaussian distributed site energies exhibits
the BNN scaling features in the limit of low temperatures [56]. The master curve,

however, is different from that obtained experimentally.

Similar to the approaches discussed in this and previous subsection, a general
theory to describe non—Debye relaxations based on hopping models in disordered
energy landscapes was developed by Hunt (for a review, see [57]). He uses extensions
of the picture of hopping between two neighboring valleys (“pair-approximation”,
see the following section) to clusters of valleys, in order to treat the dispersive
transport at high as well as intermediate frequencies. At lower frequencies, concepts

from percolation theory were incorporated [58].

3.5 Asymmetric-Double—Well-Potential (ADWP) Model

A prominent model to understand the low-temperature anomalies of glasses is the
system of independent two-level tunneling configurations [59,60]. This model was
used by Pollak and Pike [61] to describe a classical over-barrier hopping process and
later further studied by Gilroy and Phillips [62], who termed it the asymmetric—
double-well-potential (ADWP) model. It is now often invoked to explain the NCL
behavior (cf. sec. 1). From a general point of view, the ADWP model can always be

applied to classical hopping systems at high frequencies (“pair approximation”).

In the model one considers two independent states of a double well potential that
are separated by a barrier V' and exhibit an energy difference A. If the two states
refer to two positions of a charged particle with distance a, the dielectric response
of identical ADWP configurations with number density n is calculated to be
w 1

— L — 30
p1p2 l_l-u”_a T w1+w27 ( )

where w; is the jump rate out of state 7 and p;* = w;7 is the equilibrium probability
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of state i. Using wy o = vexp|—(V £A/2)/kgT] in accordance with detailed balance,
one finds

N ne’a? 1 1 _exp(V/ksT)
12kpT 1 — iwT cosh®(A/kgT)’ "7y cosh(A/kgT) "

(31)

o(w)=—i

This corresponds to a Debye peak with a peak frequency 1/7.

A smooth distribution (V) of barriers with support in some interval
(Vinin, Vinax) gives rise to a broad distribution of 7 values that varies smoothly in
a regime exp(Vinin/ksT) X Timin K 7 <K Timax X eXP(Vinax/ksT'). For 1/w belonging
to this regime, the averaging of 1/(1 — iw7) over V yields a function very weakly
dependent on w. This implies that the conductivity is approximately proportional to
w, corresponding to a NCL regime as discussed in the Introduction. By an additional
averaging over the asymmetry parameter A one can furthermore tune the tempera-
ture dependence of the conductivity. In this way NCL regimes are successfully fitted
[63].

3.6 Limitations of Single-Particle Models

In the single particle approaches discussed above the non-Debye relaxation behavior
was associated with some distribution function 1 of parameters that characterize
the disorder in the material. These distribution functions are rarely known from
microscopic considerations. In any attempt to incorporate the effects of disorder one
therefore has to make assumptions about the appropriate form of ). The physical
significance of a chosen 1) can be supported, when its implications are found to be
consistent with not only one but with a set of observables. Often it turns out that
the main theoretical predictions are not very much affected by details in the form
of ¢ so that their validity is not strongly limited. On the other hand, in this case
one cannot learn much from measurements of transport quantities about the specific

character of the disorder in the material.

A more serious omission is the neglect of the ion-ion interactions. These inter-
actions are typically strong and much larger than kg7 at room temperature. In the
description of the effects of macroscopic heterogeneities in two- or multiphase sys-
tems, Coulomb interactions can be included most easily via random network models
of impedances that are derived from the macroscopic Maxwell equations, see sec. 6.
Such models are inapplicable to describe the microscopic ion dynamics in amorphous

phases or strongly defective crystals with heterogeneities on atomic scales. Ton—ion
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interactions can then manifest themselves in various ways. The simplest effect is a
renormalization of parameters entering an effective single particle model. As interac-
tions energies have to be compared to the thermal energy, the distribution function

1 will become temperature dependent.

Moreover, it is important to seek for a coherent explanation of the non-Debye
behavior in different dynamical probes, where ion-ion interactions can play different
roles. A well-known case is the distinction between the tracer diffusion and the charge
diffusion constant, which in a many-particle system enters the Nernst-Einstein rela-
tion (17). In nuclear spin lattice relaxation it is the motion of pairs of ions that is

probed and it is important that two ions do not like to become close to each other.

Problems with respect to the consistency in the ADWP model, when applied to

the NCL response in glasses, are pointed out in sec. 5.2.

4 Phenomenological Theories

Various phenomenological approaches were proposed to describe ion transport in
complex systems. In these approaches the ion-ion interactions are accounted for in
an effective way so that one is again dealing with one-particle theories. The concepts
leading to the basic transport equations, however, are borne out by interaction

mediated correlation effects.

4.1 Defect Models

One of the earliest models to explain non-Debye behavior goes back to Glarum [64]
who considered the overall relaxation to be caused by separated individual relaxation
centers. By contrast to the superposition of Debye processes discussed in sec. 3.1, the
centers have only one intrinsic relaxation rate 7y. The non-Debye character of the
overall relaxation is caused by an additional relaxation path that is followed once a
defect arrives at a center. In this case the center is assumed to relax instantaneously.
The defects diffuse through the material with a diffusion coefficient Dy and have a
number density nger. The relaxation function ¢,(t) for the polarization of a center

can then be written as
¢p(t) = exp(—ot)[1 — P(?)], (32)

16



where [1 — P(t)] is the probability that no defect arrives at the center until time ¢.
The dielectric function follows from
é(w) —e€ < .
W) e = —/ dt ¢p(t) exp(iwt) . (33)
€ — € 0
In the original version of the model, Glarum considered a one-dimensional system
and assumed that it is sufficient to allow only the defect closest to a relaxation center
to trigger the instantaneous relaxation. He showed that the dielectric response in this
case resembles a Cole-Davidson behavior for ¢ = vy/4Dn?,; 2 1 with an exponent

Bep ~ ¢/(1 + ¢). In the absence of an intrinsic relaxation process (7o = 0) the

Cole-Cole formula is recovered with Soc = 1/2.

Later Bordewijk [65] modified the Glarum model by allowing all defects to trigger
a relaxation. Moreover, he considered the problem also in d = 3 dimensions, where
the relaxation of a center is initiated once a defect enters a spherical region with

radius R around the center position. For this more reasonable model one finds [65]

Pp(t) = exp[—mt — (121)"?], (34)

where 71 = v + 647 Dges Rn?; and vo = 47 Dget Rnger [66]. For 71 < 72 (e.g. for
v = 0 and ngR? < 1) the relaxation is dominated by a KWW function with
exponent Syxww = 1/2.

Elliott and Owens [67] applied this model to ionic transport in glasses. To this
end they considered the ion themselves to play the role of the defects by assuming
that the dominant relaxation mechanism is the movement of an ion upon arrival
of another ion in its neighborhood. The intrinsic relaxation process on the other
hand refers to a more localized motion of an ion, as e.g. the motion from a stable
to a metastable position in a given potential well. When calculating the dielectric
function associated with eq. (34) from (33), one finds that for vy, 2 7, é€(w) resembles
a Cole-Davidson behavior, while for v < 7, the dielectric response is very similar to
a Cole-Cole-form. Such models of relaxation controlled by ordinary defect diffusion
were extended to diffusion on fractals in [68,69] and to anomalous diffusion caused

by long-time tails in waiting—time distributions [70, 71], see section 3.2.

4.2 Coupling Concept

The coupling concept developed by Ngai [72] is another prominent model for relax-

ations in complex systems. It has been applied to a huge variety of experiments,
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including measurements of ionic transport quantities in disordered solids [2]. The
coupling concept is based on the fact that the primitive relaxation of a microscopic
unit at short times t < ¢, can be considered to be independent of the other species,
while at larger times ¢ > ¢, the interactions between the relaxing units have to be
taken into account. The interactions require the primitive units to rearrange in a

cooperative way to accomplish the relaxation.

The overall relaxation of some quantity @) (e.g. the polarization, electric field,
magnetization) is characterized by a rate equation for the associated normalized
relaxation function ¢(t) = Q(t)/Q(0),

dg _

L0 (3)

where the time-dependent relaxation rate behaves as

W Moo it (36)
t) ~ 36
Wo (t/te)Pxww=l ¢ ¢,

The time ¢, equals t. up to constants close to one and will be identified with ¢, in

the following.

In the original work [72] the power law in (36) was motivated by an infrared di-
vergence of the excitation spectrum, which results from the Wigner distribution of
energy eigenvalues associated with an Gaussian ensemble of random Hamilton ma-
trices. Later attempts to justify eq. (36) in more detail refer to the chaotic nonlinear
dynamics of many body systems [73-75]. The constant short-time relaxation rate
Wy is thermally activated, Wy = vexp(—FEy/kgT), and the time t. for the onset of
the cooperative dynamics is assumed to be temperature independent. Experiments

suggest t. to be of the order of 1 ps.

Solving eq. (35) yields

¢(t) exp(—Wgt) , t << L, (37)
exp[— (t/Teww )XYW, > ¢,
where . 1 Beceres
= t.. 38
Tkww |: Wot. :| ( )

Equation (38) relates, by continuity, the primitive relaxation time W' to the

Kohlrausch relaxation time 7yww. Since t. is temperature independent, eq. (38) is
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very useful to correlate the parameters Tuww and Bgww. In particular, W, can be

extrapolated from Arrhenius plots of high—-temperature data [76, 77].

With respect to temperature two situations can be distinguished: For large
T, where Wyt. < 1, the decay of ¢(t) is dominated by the simple exponential
~ exp(—Wyt) and the stretched exponential is irrelevant. For low—temperatures by
contrast, where Wyt, < 1, the exponential decay at short times contributes only
a small amount to the overall relaxation, which is dominated by the Kohlrausch
function. Accordingly, the coupling concept describes a crossover from a Debye be-
havior at high temperatures to a non—Debye relaxation at low temperatures with

the relation (38) connecting these limiting behaviors.

4.3 Jump Relaxation Model

The jump relaxation model (JRM) was developed by Funke and coworkers [78]
and attributes the dispersion in the conductivity to strong forward—backward jump
correlations in the motion of an ion. These correlations have been considered in
random walk theories [79] and their importance was early recognized for strongly
correlated Coulomb systems [80]. The JRM is based on the following idea: After
a hop of a “central ion” from an initially relaxed local configuration this ion is no
longer in equilibrium with its surroundings. In order to stabilize the new position
of the ion, the other ions its environment have to move. On the other hand, the ion

can also jump back in order to (partially) relax the configuration after the jump.

The longer the ion stays at the new position after the jump, the smaller becomes
the preference for a backward jump to occur. Denoting the probability W (t) that
no correlated [81] backward jump has occurred up to time ¢, the probability that a
correlated backward jump occurs in the time interval (¢,¢+ At) is [1 — W (t+ At)] —
(1 — W(t)] = =W (t)At + O(A#2). Hence the backward jump rate is —W (t). The

velocity correlation function of an ion may then be written as

(#(t) - 7(0)) = Toa*{(t) — [~W (D]}, (39)

where 'y and a are the mean jump rate and mean jump distance, respectively. Since
d?(r?(t))/dt* = 2((t) - ¥(0)), and d(r?(t))/dt|;—o = [y a?, integration of (39) from 0

to ¢ yields [82] o
W(0) = ) (40)
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W (t) can thus be considered as the normalized time derivative of the mean square

displacement.

To quantify the stabilizing effect of the surrounding ions, a “mismatch function”
g(t) is defined that has the meaning of a normalized distance between the actual
position of the central ion and the position at which it would be in local equilibrium
with the other ions in its environment. The “stabilization rate” can then be thought
to be proportional to —g(¢) and the decrease of W (t) occurs with this rate, i.e.
W(t+ At) = W(t){1 — [-B - g(t)]At + O(At?)}, where B is a proportionality

constant. This implies
dw (t) dg(t)
dt dt
Once the function g(t) is known, W (t) can be calculated from (41) and in turn the

= BW (1) (41)

conductivity is calculated via eqs. (40,16,17).

In recent years different levels of approximation for the function ¢(t) have been
employed. While in the early stages of the JRM an exponential function was consid-

ered, more sophisticated studies suggested ¢(¢) to decay in a non-exponential way
[1].

Recently, an extension of the JRM was formulated, being called the Concept
of Mismatch and Relaxation (CMR) [83]. In the CMR the time evolution of the

mismatch function g(t) is specified by the rate equation

0 gy wn, (42)

which for K = 1 can be reasoned by linear response type arguments. However, larger
values of K are attributed to screening effects and give a better agreement with the
experimental data. Comparison with experiments can be made by solving the two
coupled eqs. (41,42) subject to the initial conditions W (0) = ¢(0) = 1. The two
parameters A and B are connected to the limiting values of the conductivity: A
is proportional to 0, while B = In[1/W (c0)] = In(0w/0q.). By fitting measured
conductivity spectra for different samples it was shown that K = 2 gives a very good
description for high ionic concentrations and three-dimensional ion motion, while
for lower concentrations of mobile ions and ion motion in lower dimensionalities, K
turns out to be larger than two [83]. The overall approach accounts very well for
the time-temperature scaling features of conductivity spectra of ionic glasses. The
small changes of the master curves with the ionic concentration can be described by

a proper choice of K.

20



5 Many—Particle Approach:

Hopping with Ion—Ion Interactions

Various analytical as well as numerical approaches have been worked out to include
interaction effects for hopping in regular lattice gases. Hard core systems have been
treated by Green function techniques [84], while the path—probability method is par-
ticularly well-known for problems of stationary state hopping conduction in systems

with short-range interactions.

An alternative way to describe tracer diffusion in lattice gases with short-range
interactions is to use a kind of many—particle effective medium approximation [85—
88]. The idea of this approach is that a neighboring site of a tracer particle becomes
accessible within an initially unknown renewal time. The tracer diffusion coefficient
D is then calculated by single—particle dynamic percolation theory. Using the result
for D the initially unknown renewal time is determined self—consistently. The method
has been extended to non—Poissonian renewal processes [89], which turned out to

be particularly important for describing diffusion through polymer networks [90].

For particles interacting via long-range Coulombic interactions in regular lat-
tices the dispersive transport properties and dynamic structure factors have been
treated by the mode-coupling technique [91]. The strong non-Debye features of
ionic motions in complex systems, however, require to go beyond regular lattices
with equivalent sites and to take into some structural disorder. Such problems are
no longer tractable by analytic means and one has to rely on simulation methods.
Simulation studies of microscopic effects of ion—ion interactions were performed
based on the lattice-gas Hamiltonian [92]

H({n}) = ¢ Y N e, (43)

8meg itj [ E—

where the sums run over all lattice sites, n; are occupation numbers (n; = 1 if lattice
site 7 is occupied and zero else), and ¢; are site energies characterizing the disorder

in the material. At most one ion is allowed to occupy a given lattice site, n? = n;.

Metropolis jump rates are employed to specify the hopping dynamics of the ions,
being explored by Monte-Carlo simulations. The ions are allowed to jump to vacant
nearest neighbor sites with the rate w = vmin(1, exp(—AH/kgT), where AH is
the difference in energy after and before a jump according to (43), and v is a bare

hopping frequency. We choose v~! as the time unit. This corresponds to one Monte—
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Carlo step (MCS), where on the average all particles have performed one jump trial.
All quantities of interest are determined after equilibration of the system. Periodic
boundary conditions are used and the long-range Coulomb interaction is taken into
account by the Ewald summation technique. For further details we refer the reader
to the original literature [93, 94].

Different types of disorder were investigated in order to check the robustness of
the results. In the simpler models, one assumes the site energies to be uncorrelated.
Two complimentary cases of the distribution t.(€) of site energies were considered
in this situation [92, 94]:

(i) A percolative type of disorder, where only a fraction p of the lattice sites is acces-
sible for the ions, with p = 0.4 well above the percolation threshold [98] (p. = 0.3117
for the simple cubic lattice [45]). This type of disorder can formally be expressed by

a distribution

Ye(e) = pd(e) + (1 —p) (e — o), p=20.4>p,. (44a)

(ii) A smooth Gaussian distribution with zero mean and variance o2 [92, 93]

1 €2
€)= ————=exp|l—=—=] . 44h
60 = s o0 () (440)

In a more realistic model the site energies were attributed to the Coulomb fields
of immobile counterions [95-97]. These counterions are distributed randomly among
the centers Ry, of the cubic lattice cells. Denoting the fixed counterion occupation
numbers of the cell centers by n;, the site energies ¢; encountered by the mobile ions

are
2 ~

€ = — ¢ Z i (44C)

dmeq < ; — Ry

Charge neutrality implies ), 7y, = Y, ng. Clearly, the site energies are strongly

correlated in this model.

5.1 Jonscher Regime
5.1.1 Tracer Diffusion

Figure 1 shows the time dependent diffusion coefficient [94]

D(t) = () (45)



of a tracer ion, (a)in the ordered lattice and (b) for the percolative type of disorder
[eq. (44a)]. Data for different strengths of the Coulomb interaction are shown, spec-
ified in terms of the plasma parameter I' = e?/(4merskgT), where r, = (3/47n)'/3
is the half mean distance between the mobile ions. The concentration n of ions is
n=0.0la"3.

For times ¢ < 1 smaller than 1 MCS, (r?(¢)) is proportional to the total number of
hops, which increases linearly with time and therefore D(t) is constant, D(t) = Ds.
For t > 1, D(t) decreases with ¢ and finally approaches the long-time diffusion
coefficient D,. In the ordered system, the decrease of D(t) is comparatively weak,
even at large plasma parameters [' (low temperatures). In the disordered system, by
contrast, D(t) decreases over several orders of magnitude for large I'. As shown by
the solid lines in the figure, the data can be well fitted by

D(t) = Do + (Dyt — D) <1 + ti> o (46)

x
For I' = 40, 80 the cross-over time ¢, to the long-time diffusivity becomes much
larger than one. Hence a power-law regime 1 < ¢t < ty can be identified in Fig. 1b,
where D(t) ~ t~"P corresponding to a Jonscher type response. The exponent np
is np =2 0.63 for I' = 40 and n, = 0.69 for I' = 80. This power law is connected
with strong forward-backward correlations in the trajectory of a tracer particle.
This has been shown by additional simulations of the mean—square displacement
as a function of the number of performed hops [92], and is in accordance with the

picture underlying the jump relaxation model, see sec. 4.3.

We can conclude from these results:

(7) Disorder is a necessary ingredient for understanding the Jonscher regime.

(77) Ion-ion interactions strongly enhance the dispersive effects, so that also in sys-

tems with comparatively weak disorder a Jonscher type response is observed.

These features are not restricted to the percolative disorder considered in Fig. 1b

but were found also for other types of disorder discussed in sec. 5 [eq. (44b)].

5.1.2 Frequency—dependent Conductivity

The time-dependence in the diffusion coefficient of a tagged particle, discussed so

far, translates into a frequency-dependent diffusivity ﬁ(w), as given by eq. (16).
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Of primary experimental relevance is the dynamic conductivity &(w). For many—
particle hopping, eq. (17) has to be corrected by a frequency—dependent Haven ratio
Hg(w) = ne2D(w)/ksTé(w), which expresses the strength of cross—correlations, i. e.
the correlations in the motion of different particles. It turns out that |Hg(w)| < 1 is
never far from unity so that in cases of strong dispersion the frequency-dependences

of D(w) and &(w) are essentially the same. In particular, np ~ n,.

Particularly strong conductivity-dispersion between the dc- and high-frequency
plateau is found for the counterion model, eq. (44c). Both real and imaginary parts
of 6(w) = o'(w) + i0”"(w) are plotted in Fig. 2 for a fixed concentration na® =
0.03 at various temperatures. The Coulomb interaction strength here is defined
simply by V' = e?/4wepa. Generally, the real part o'(w), see Fig. 2a, displays the
features discussed in the introductory sections, suggesting a fit in terms of power
laws. Closer analysis of the data for V/kgT > 1 and not too large frequencies yields
exponents n, =~ 0.86, which are somewhat larger, but similar to those observed
experimentally. At larger frequencies, o'(w) appears to increase with even larger
slope. This is indicative of the onset of an NCL-type regime, to be discussed in

greater detail in sec. 5.2.

Figure 3 summarizes the occurrence of four distinct dynamical regimes in the
counterion model. The respective crossover frequencies can be interpreted through
characteristic times deduced from independent simulations of the mean-square dis-
placement. Upon lowering the frequency, the plateau I terminates around ¢ = 1
corresponding to 1 MCS or a time v~ !. An NCL-type response II is observed as long
as an ion has negligible chance to escape from a site next to a counterion. This cri-
terion gets violated when (r?(7ycr)) = a?, and, indeed, one finds that wyer, = 1/7yer.
Finally, the crossover from the Jonscher regime III to the dc-plateau IV occurs, when
an ion has a chance to leave the Coulomb basin connected with its (previous) coun-
terion. This happens after a time 7, = w; ', given by (r?(7,)) = 72 (r, = (3/47wn)'/3,
cf. sec. 5.1.1). From these findings it is not surprising that o4 and w, as a func-

tion of temperature are governed by the same activation energy FEq4., which can be

interpreted as an effective saddle point energy between adjacent counterions.

5.1.3 Spin-Lattice Relaxation

As discussed in the introduction, the non—Debye behavior seen in the conductivity

is reflected also in other dynamical probes. The spin lattice relaxation rate 1/T}

24



is governed by the fluctuations of magnetic and electric fields at the nuclei of the
mobile ions. In ionic conductors the main contributions to the fluctuations typically
come from the magnetic dipole-dipole interaction between the ion nuclei and the
interaction of the nuclear quadrupolar moment of one ion (with nuclear spin larger
than 1/2) with the electric field gradient due to another ion. In both cases the

relevant correlation functions G?(¢) can be written as [99, 100],

1 .
GO = 5 X AR OFL ), a=1.2 (47)
i#]
where Fi(f) (t) = q(8m/15) Y31 (€;;(t)) /r;(t) is the local field between the ions i and
j. Yy are the spherical harmonics, and ;; and r;; are the spherical coordinates of
the vector 3; pointing from ion ¢ to ion j, with respect to the applied magnetic field.

For an isotropic distribution of the ions one has G®(0) = 4G (0) [99].

Introducing the spectral densities J(@ (w) [99,100] of the NMR correlation func-
tions G(9(t)

JO) (1) = / G ()i dt, (48)
the spin lattice relaxation rate can be calculated from
1
= C(JM(w) + TP (2w)), (49)
1

where w = vH is the Larmor frequency and the constant C' in (49) depends on the

nuclear properties of the mobile ions.

For an exponential decay G'9(t) = G'9(t) exp(—t/7) an Arrhenius plot of In 1/T}
versus inverse temperature gives a symmetric curve that at the high temperature
side (wr < 1) is frequency independent, while at the low temperature side (wr > 1),
1/T, decreases as w2 = (yH)™? with increasing field H. This form is commonly
referred to as the standard Bloembergen—Purcell-Pound (BPP) behavior.

Monte-Carlo simulations of the models introduced in sec. 5 show that Arrhenius
plots of the spin lattice relaxation rate are indeed approximately symmetric (i) for
ordered systems irrespective of the strength of the Coulomb interaction, and (i) for
disordered systems, when neglecting the Coulomb interaction. Again it is thus found
[101] that the combined effect of disorder and Coulomb interaction reproduces the
typical non-BPP-behavior seen in experiment, that means asymmetric Arrhenius
plots of the spin lattice relaxation rates and an anomalous field dependence of 1/T}

on the low temperature side (cf. the discussion in sec. 1). A representative example
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is shown in fig. 4 | where in part (b) the non-BPP behavior for a system with
percolative type of disorder is displayed. To accomplish a reasonable comparison with
experiment, the ratio of the characteristic Coulomb interaction energy e?/4megr,
to the bare structural energy barrier V, between the lattice sites was kept fixed,
(€?/4megrs)/Vo = 5 (for further details see [94]). Figures 4a and 4c show the BPP-
like behavior for the corresponding ordered system and the disordered system when

neglecting the Coulomb interaction, respectively.

5.1.4 Quasi—Elastic Neutron Scattering

The differential cross section measured in neutron scattering experiments is deter-
mined by the Fourier transforms of the van-Hove correlation function. Given an ion
at the origin at zero time, the self part of this correlation function is the probability
P(7,t) for the same ion to be at position 7 at time ¢, while the distinct part is the

probability for any ion to be at 7 at time ¢.

In the Jonscher regime 1 < ¢t < ty (cf. sec. 5.1.1), the probability P(7, t) strongly
differs from a Gaussian. Nevertheless, studies in systems with percolative disorder

[94] showed that a scaling ansatz

r

P(7t) = P(0,t) h (R(t)> N 0

(r?(e)'? (50)

with P(0,¢) oc R(t)~® can be made, where R?(t) ~ t'~"1. As shown in fig. 5, the

scaling function h(u) is found to decay as
h(u) ~ exp(—Cut), uzl. (51)

Here C' is a constant and p ~ 1.2, i.e. one obtains a much slower decay compared

to a Gaussian.

It is interesting that the value ;. ~ 1.2 may be understood from a simple argument
borrowed from [29]. Let us apply an external force f in the z-direction of the system.
We then make the ansatz Py(7,t) oc P(7,t) exp(fz/kgT) to describe the change of
P(7,t) in the presence of the force. Accordingly, the drift (2(¢)) of the ion is

_ [ dPrzP(rt) exp(fz/ksT)

) = [ &3 P(r,t) exp(fz/kgT) (52)
For small times ¢, where R(t) f < kgT (or (z(t));f < kgT') this implies
R2
)~ 20 7, (53)
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in agreement with the fluctuation—dissipation theorem.

For large times, however, the force always becomes strong ((R(t))f 2 kgT) and
the response will be nonlinear. Inserting eqs. (50,51) into eq. (52) and introducing

cylinder coordinates (7, z) we obtain for the numerator in eq. (52)

o oa () [l (5]
- 27rP(6,t)/dzz exp (é—é) /oo dv exp [_C <%>u] |

and an equivalent expression for the denominator in eq. (52). Since the v-integral

with the lower bound z? decreases as ~ exp{—C[z/R(¢)]"} for large z, we can

use a saddle point approximation to perform the z-integration. The saddle z,(t) is
determined by
0

zf z \"
il _ _C =0 o4
5| L ¢ (ai) | =0 o
and yields, using R?(t) ~ ¢'="P  the drift

(2(t))f ~ 2z (t) ~ L =no)ul/R(u=1)] £1/(n=1) (55)

By requiring (z(¢)) s to be linear in ¢ for large times, we finally obtain

2
140,

p (56)

With n, = 0.63 for I' = 40 and n, = 0.69 for I' = 80 (cf. sec. 5.1.1), we find p = 1.23
and p = 1.18, respectively, in fair agreement with the value p ~ 1.2 obtained from
fig. 5. At present, however, it is not clear if this is a mere coincidence or if the ansatz
for P;(7,t) and the consequences (55,56) can be substantiated by further analysis.

To this end more detailed studies would be necessary and desirable.

It should be noted also that eq. (56) was earlier obtained in the context of
random walks with long-range correlations (self-avoiding random walk, random
walks on fractals [48]). In these systems the ansatz for Py(7,t) is better justified.
In an interacting many-particle system a strong force leads to a redistribution of
the ions in phase space compared to the equilibrium distribution in the absence
of the force, and the use of P(7,t) in the ansatz P(,t) oc P(7,t)exp(fz/kgT) is
more questionable. Let us note finally that eqgs. (55,56) would imply a nonlinear
response (z(t)); ~ f(4np)/(1=mp) *which, however, should be difficult to observe

experimentally.
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The full form of P(7,t) allows one to calculate the intermediate scattering func-
tion Sinc(k,?) and its Fourier transform, the incoherent structure factor Sie(k,w).
For kR(t) < 1, in particular,

S (o) = exp (-0 57)

In the Jonscher regime, where R?(t) ~ ¢'~"P_ this leads to a slowing down of the
decay compared to a Gaussian. As a consequence, broad quasi—elastic components
appear in ginc(E,w) with an anomalous frequency dependence ~ w" 2 for w >

(ka)?(2=mp) This behavior is in qualitative agreement, with experiments [1].

5.1.5 Mechanical Relaxation and Acoustic Attenuation

Generalized coherent dynamic structure factors of the subsystem of diffusing ions
also pertain to mechanical relaxation and the attenuation of ultrasonic waves due to
ion hopping. Let us first recall the well-known process of strain-induced relaxation
of an isolated defect, subjected to a double-well potential (see sec. 3.5). Shear strains
oscillating with frequency w will modulate the asymmetry parameter A and thus
drive the system out of equilibrium. Relaxation through activated hops over the
barrier between the two wells gives rise to a Debye peak in the attenuation coefficient
a(w) at the hopping frequency, and an associated change in sound velocity dv(w)
[102,103].

The general mechanism for attenuation borne out in that two—site model can be
taken over to a lattice gas description for a system of many interacting defects [104].
Suppose that in the presence of a particular sound mode with wave—vector ¢, fre-
quency w and strain amplitude uz the Hamiltonian (43) for an initially unperturbed

lattice gas is changed into
H({n}, 1) = H({n}) + H'({n},1). (58)
The perturbation
H({nyt) = 3 neoe(t)
= Al_quqei“’t + c.c. (59)

with
Ay =) gpmpe ™ (60)
r



is caused by the modulation of site energies

dep(t) = grugexpli(gl — wt)] (61)
where g; denotes the deformation potential of site [.Ina glass, all sites in general
are non—equivalent, and the deformation potentials are subject to some distribution.
In a crystal, due to the presence of defects, there exist at least certain groups of
distinct sites with different g;’s. Hence we introduce the fluctuations Gy = gy — g,
where g denotes the deformation potential averaged over all sites, so that ) G = 0.
In analogy with the two-site model described above, these parameters reflect the
strain—induced site asymmetry. To simplify the discussion, we pass to the long wave—
length limit, § — 0, where we can write Agz=) = gN + A. The first term contains
the total number of ions, N = ) n;, which is a conserved quantity and need not be

considered further, while the variable
A= Z anf (62)
I

relates to the strain—induced redistribution of ions among the sites. To obtain the
attenuation, it is most convenient to compute the power dissipated in the ionic
system, which is equal to the energy loss per unit time of the acoustic mode. In

terms of the generalized susceptibility y(w) associated with the observable A,

xmozﬁ«A%+wwAwde%MwA» (63)
one finds
a(w) = 7rp1v3w Im y(w) (64)

where 3 = (kgT)~!, p is the mass density and v the unperturbed sound velocity.
The associated change in sound velocity is given by

50(w) = ——(x(0) - Re x(w)) (65)

v

Debye expressions can be recovered by setting x(w) = x(0)/(1 — iwT).

To proceed, we rewrite (64) as

alw) = W%uﬂs(w) (66)

where Av = dv(00) is the difference between the high— and low—frequency sound

velocity, and s(w) is the normalized spectral function

S(w) = — / dt €L (A() A) /(A2 (67)

:27r
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Without going into structural details of a given material, the expected qualitative
behavior of s(w) can be discussed as follows. Noting that > Gy = 0, we argue
that within few interatomic distances there are non—equivalent sites with positive
and negative Gj. The strained system can therefore equilibrate via purely local
hops. Qualitatively, this idea is implemented most easily through a two-sublattice
model: In a simple cubic lattice with spacing a, the two sublattices that correspond
to a (1,1,1)-superstructure have deformation potentials G and G' = —G, so that
A=GYn exp(—ik*l) with k* = 7(1,1,1)/a. Equation (67) then becomes iden-
tical to the coherent dynamic structure factor normalized by the static structure
factor, s(w) = S(k*,w)/S(k*), and the total relaxational strength is determined by
Av = (G?/mpvkgT)S(k*). The essence of these arguments is that, generally, the
spectral function s(w) in (66) will be related to the dynamic structure factor or a
superposition of structure factors, taken at short wave-lengths reflecting the hopping

distance between inequivalent sites with different deformation potentials.

To demonstrate the typical dynamics displayed by structure factors at short
wave-lengths, numerical simulations for S(k*,w) were carried out within the coun-
terion model, see eq. (44c) [104]. Results in the time—domain are plotted in fig. 6.
After a fast initial drop one clearly observes a subsequent slower decay. A good rep-
resentation of the data up to Monte Carlo times of the order ¢ ~ 10* is achieved by
writing

S(k*,t)/S(k*) ~ (1 — b) exp(—t/79) + b®(t) (68)

where ®(t) = exp[—(t/Txww)?*"W] is the Kohlrausch function. The KWW-
exponent [yxww decreases with temperature. At the lowest temperature in fig. 6,
with SV = 30, one finds Sxww ~ 0.40 and b ~ 0.48, reflecting pronounced non—
Debye relaxation. The relaxation time Tyww follows an Arrhenius law, while the
first, Debye-like term in (68) depends only weakly on temperature. Experimental
attenuation spectra of ionic glasses were often analyzed in terms of the KWW re-

laxation function [105].

The above formalism immediately applies also to internal friction measurements,
usually carried out at frequencies w < 10%s~!. Thereby, the mechanical modulus,
see (4), is related to the spectral function (67) by N"(w) x ws(w). Furthermore,
an extension to a two—component lattice gas has been proposed as an attempt to

describe the mixed—alkali effect in mechanical relaxation experiments [8].

30



5.2 NCL Regime

A nearly constant dielectric loss (NCL), as described in the Introduction, is an
ubiquitous phenomenon in disordered materials, including ionic systems as well as
polaronic conductors [3-5]. Yet its investigation has received fairly little attention
up to now. The clearest evidence arises from several studies on low—conductivity
materials up to megahertz frequencies and at temperatures below about 10? K,
where the dc—conductivity oq.(7T") becomes negligibly small. On the other hand, near
room temperature, an NCL-response can still be observable, provided the measuring
frequencies w are sufficiently high (wycr,(T) < w ~ 107 to 10'° Hz). NCL-spectra
in those two regimes seem to have different origins, but this question is not fully
settled so far [106].

A collection of dielectric data for ionic conductors has been analyzed with respect
to the NCL by Ngai [107]. Writing ¢'(w) ~ A(T)w, the dependence of the prefactor
A(T) on temperature, ion concentration and other materials parameters indicated
that the physical origin of NCL-spectra should be sought in non—activated ionic dis-
placements with amplitudes smaller than interatomic distances. Nowick et al. [108]
proposed a similar picture of small-amplitude collective motions of cage ions relative
to dopant ions in weakly doped crystals. Commonly, the ADWP-model (sec. 3.5) is
used as a formal frame for the description of the NCL. However, as pointed out by
Jain [106, 109], fits to experiment yield distribution functions P(V, A) which depend
on temperature and ion concentration. This already raises the question as to the
real physical significance of the effective barrier and asymmetry parameters V' and
A. Notice that fits of the ADWP-model to the room-temperature/high frequency
NCL-response of ionic glasses require the distribution P(V;A) to extend to rather
large values V/kg = 10 K, significantly larger than assumed in the original works
[61,62].

A further difficulty with the ADWP-model arises from estimates of the strength
of electric dipole—dipole interactions. Let us adopt for the moment the hypothesis
that the loss spectrum of a given material is due to an ensemble of localized ADWP—
like defects, distributed homogeneously in three-dimensional space with a number
density n = (47r2/3)"!. From eq. (30) the measured loss intensity provides an
estimate for the quantity n p?, where p = ea denotes the magnitude of the electric
dipole moment associated with the double well structure. Apart from a factor e, the

same quantity n p? measures the strength of dipole—dipole interactions between the
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defects, because these interactions decay with distance r as Vy;,(r) == p?/r3, so that
Viip(rs) ~ p?/r3 ~ cp?. However, for temperatures kgT < Vg, (rs) we will show by
detailed model calculations that dipole—dipole interactions modify the dielectric loss
spectra in a fundamental way. ADWP-parameters as given in [61] and [110] imply
np?/kg 2 102 K, and hence suggest that the conventional ADWP-model without
electrostatic interactions may become inconsistent at temperatures 7' < 10% K. Let
us remark that additional long—range interactions of similar strength can originate

from elastic deformations as, for example, in dipolar glass systems [111].

Before we turn to Monte Carlo simulations of a specific model, we demonstrate
by an analytic argument that random dipolar interactions will quite generally lead
to slow relaxation of the polarization. Clearly, a selected defect will interact most
strongly with its closest neighbor. Suppose that within such a defect pair at dis-
tance r a barrier V5/r? of the order Vy;,(r) has to be overcome in order to allow a

relaxational step. The relaxation time is then given by
7(r) = 1pe"o/k8T (69)
and the relaxation function is determined by averaging exp[—t/7(r)] over all pairs,
C'(t) = const. /00 dr 4mnr? exp[—(47n/3)r®] exp[—t/7(r)] (70)
0

The weighting factor 4rnr?exp[—(47n/3)r3] is the probability density that a de-
fect has its closest neighbor at distance r. For kgT < Vi/r? and times ¢t >
1o expldnnVy/3kpT], eq. (70) yields

dmn Vy 1
3 kBT ln(t/To)

O(t) ~ (71)

This logarithmic decay in time converts to a logarithmic w—dependence of the loss,

1

X' (w) ~ m

(72)

which is “nearly constant” from an experimental viewpoint.

These arguments on the role of dipole-dipole interactions can be confirmed by
Monte Carlo simulations of a dipolar lattice gas [112]. Select at random a frac-
tion na® < 1 of unit cubes of a three-dimensional simple cubic lattice of size L
with periodic boundary conditions. The midpoint of each selected cube carries a
fixed negative charge —¢, while a positive charge ¢ (“cation”) can undergo nearest—

neighbor hops within the shell of eight binding sites surrounding the central charge.
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Hopping probabilities, chosen according to the Metropolis algorithm, are based on
Coulomb interactions among all charges. For sufficiently small n, dipole-dipole in-
teractions will prevail; in that sense our model may be termed a “dipolar lattice

gas”, see fig. 7 for an illustration.

The complex dielectric susceptibility x = x'+ix” of that model is deduced in the
standard way by simulating the correlation function of the total polarization; details
are found in ref. [112]. Figure 8 shows plots of x”(w) for na® = 1/64 and several
temperatures, parameterized by © = 3kgT/4cp?®. At higher temperatures, © > 10,
the response is Debye-like, with a peak—frequency given by the average hopping rate.
For lower O, however, x"(w) develops an NCL—plateau, which at © = 0.8 extends
over at least three orders of magnitude. That dipolar lattice gas model therefore
implies a mechanism for NCL-behavior. In comparison with (71) it is interesting
to note that the “self”—part of the simulated correlation function indeed shows a
logarithmic decay. Discussing the self—part seems sufficient since the “distinct”—part
(containing cross—correlations between different defect centers) does not change the
shape of the spectrum in a significant way, although its intensity even exceeds that

of the self—part, cf. the discussion of Haven ratios in sec. 5.1.2.

Dynamic Monte Carlo simulations of this type can be regarded as a method for
solving an underlying many-particle master equation. Hence the question arises,
whether that master equation can also be treated analytically. An exact solution by
straightforward diagonalization is limited to systems with a small number of defects,
but already indicates “strange” dynamics [113]. An approximate analytic approach
for larger systems, emphasizing the cooperativity of defect pairs, has recently been
developed [96, 112]. That pair approximation, when applied to the present model, is
able to qualitatively reproduce the simulated NCL-spectra. This analysis thus gives
independent support for the ansatz made above that the pairs of closest dipoles

dominate the relaxation spectrum.

6 Macroscopic Inhomogeneities:

Complex Impedance Networks

So far we discussed various effects of microscopic disorder on the dynamic response
of ionic systems, mostly by using the lattice gas approach. Different concepts are re-

quired in the description of heterogeneous systems showing disorder on macroscopic
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length scales. More precisely, our concern are random mixtures of different phases,
each phase being regarded as homogeneous from the point of view of macroscopic
electromagnetism [114]. Electrical transport in such composite systems generally
results both from bulk properties and from properties of the interfaces between
the constitutive phases. As described below, interfacial effects can even become
dominant. A closely related problem is the description of grain boundary effects in
electroceramic materials [12]. Still another question of great practical importance
is how to model the impedance of a given interface, including interfacial roughness
and porosity [14, 115,116, 139]. As is well known, the performance of electrochemical

cells or electrical contacts in general, depends sensitively on such effects.

6.1 Disordered networks: Basic properties, percolation

The spatial distribution of the different components in a mixture defines a position—
dependent complex dielectric permittivity €(7,w). Theoretically, the problem is to
solve for each frequency w the equation 6(66@) = 0 for the electrostatic potential
® under suitable boundary conditions. Using ¢ = 1 + i6/eow, where & denotes
the position—dependent complex conductivity that comprises all charge carriers, we

rewrite this equation as [117]
V(6 — ieqw)V®) = 0 (73)

Clearly, in the case of random mixtures the primary task will be to calculate the
configurationally averaged current, which determines the overall impedance. The
most widely studied class of examples are random conductor—insulator mixtures,
which constitute a paradigm for percolation [118,119]. A mean—field description of
a conductor—insulator transition controlled by percolation of the conducting compo-
nent, is provided by effective medium theories (EMA), see sec. 3.3. In some applica-
tions the micro-geometry is such that one phase, e. g. the conducting phase, is always
surrounded by the other (insulating) phase and never percolates. This situation is
covered by the differential effective medium theory (DEMA) [120]. This theory has
been used recently to work out the dc— and ac—response in a macroscopic model of

polymer electrolytes [121].

For computational convenience, one often studies the discretized form of equation

(73). On a simple—cubic lattice,

Z Gitai(Pite — P;) =0 (74)
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where the summation is over the nearest neighbor sites of site i [135,141]. These
equations can be interpreted as Kirchhoff’s equations for the potentials ®; on the
nodes of a network where nearest neighbor bonds (i+a, i) carry complex conductance
elements ¢;yq; = 0iya; — t€ow. Most studies start out from a binary (AB) mixture,
with “ideal” (dispersionless) conductances 6,(w) = 0, — i€y(€q — 1)w; @ = A, B
[122-124]. Here o, is given by the dc—conductivity of phase « and ¢, by its dielectric
constant. To model a mixture without any correlations in the spatial arrangement

of its components, conductance elements
Ga(W) =04 —iw Cy; a=AB (75)

are assigned randomly to the bonds of the network with probabilities p or 1 — p for
a = A or B, respectively. The equivalent circuit for one particular bond is a resistor
with resistance R, = 1/0,, in parallel with a capacitor with capacitance C, = €€,
Again, the task is to calculate an effective (homogeneous) bond conductance ¢¢//(w),
which determines the overall electrical response of the resistor/capacitor network.
The case o = 0 corresponds to a conductor/insulator mixture. Near the percolation
threshold p. and for w — 0, g°//(w) takes the form [122]

g (W) = oM —iwC +OW?);  p#p. (76)
The effective conductance o®// = ¢¢/7(0) and the effective capacitance

Cl = — lim Im ¢/ (w) Jw (77)

w0
behave as 0/ ~ (p—p.)* for p — p}, and C°/7 ~ (p.—p)~* for p — p_, with critical
exponents p ~ 1.99 and s ~ 0.74 in d = 3 dimensions [119], whereas ;1 = s ~ 1.30
in d = 2. These values originate from several theoretical techniques like the transfer
matrix method [125], the renormalization group technique, exact enumeration and

numerical simulation [126].

On the other hand, at the percolation threshold a non—analytic frequency—
dependence
g (W) ~ (W) p=pew =0 (78)
emerges. Standard scaling theory predicts that u = p/(u+ s). More generally, when
the B—component is a “leaky dielectric” so that 0 < |gg| < |ga], then

9 (w) ~ g “(w)gp(w) (79)

at p = p.. In the same limit, the effective capacitance at p. develops a large, but
finite peak [127],

1—u
cell ~ O <“_A> (80)

OB
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This equation explicitly illustrates that spatial variations of the real part of g;i,.,
see equation (75), lead to an enhancement of the imaginary part of g¢// which is the
effective capacitance C®//, as a consequence of the build—up of polarization charges.
Conversely, the capacitors in (74,75) give rise to a frequency-dependent real part

Re g%/ (w), as exemplified by equation (78).

A network with complex bond conductances g;iq;(w) = 044, — iwC, where C
is constant and o;;,; are independent real, continuous random variables, has been
studied by Dyre [128]. In that model, the bond resistors proportional to exp(E/kgT)
depend exponentially on a random activation energy E, which varies on energy scales
large compared to kgT. In this extreme disorder limit [129], the EMA predicts a
universal normalized conductivity & = (¢¢//(w) + iwC) /g7 (0), satisfying

5lng = ic (81)

where @ is a suitable dimensionless frequency. This equation implies conductivity

dispersion as described in previous sections.

To obtain quantitative estimates of the impedance of a heterogeneous medium,
details of its microstructure have to be incorporated into the network equations (74).

Two specific applications are outlined in the following.

6.2 Interfacial conductance in micro— and nano—composites

When insulating fine particles with sizes of about 0.1 to 1um are dispersed in an
ionically conducting medium, the overall conductivity can become enhanced. This
surprising effect, discovered by Liang [130], arises from the formation of a defective,
highly conducting layer following the boundaries between the conducting and the
insulating phase [131]. Effectively, the system thus contains three phases and can be

mapped onto a suitable three-component impedance network.

Figure 9 shows a two-dimensional illustration of such composites and a cor-
responding discretized model [132-134]. The random distribution of the insulating
phase C' (shaded areas) within the conducting phase B (white areas) defines a bound-
ary which corresponds to a third, highly conducting component A (thick lines). In
this way we arrive at a three—component, correlated bond percolation model. The
conductance elements g, = 0, —iwC; a = A, B, C; are chosen to have a constant ca-
pacitance C, and o = 0; 04/0op = 7 > 1. Besides the ordinary conductor/insulator

transition at a critical volume fraction p” of the insulating C'—phase, there exists a
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second threshold p! for interface percolation, i.e. percolation of A-bonds. Calcula-
tions of 0*// as a function of composition compare favorably with experiment [135].
Critical ac—effects are expected near the onset of interfacial percolation, as shown
by Blender et al. [127]. In particular, the effective capacitance C*// develops a peak
at p., whose height is given by eq. (80). The complex impedance diagram calcu-
lated from the model of fig. 9b at p = p. is depicted in fig. 10 [142]. It turns out
that the distorted semicircle in the (7', Z")-plane with Z(w) = (geg(w)) ™! is well
approximated by (79). This equation entails a power-law dependence in the range
wp € w < Twp with wg = op/C, which reflects itself in a constant phase angle

behavior near the origin where Z"/Z' = tand; 6 = um/2.

The same ideas also hold for nanocrystalline conductors, where grain sizes are
scaled down by a factor of about 50 in comparison with the dispersed ionic con-
ductors described so far. In particular, Indris et al. [13] were able to demonstrate
enhanced interfacial effects in nanocrystalline samples of (1 — z)Li;O : ByOj rela-
tive to their microcrystalline counterparts, and to explain them by using the above

theory.

6.3 Ac-response of fractal interfaces

The performance of any electrochemical device is controlled to a large extent by
the properties of the respective electrolyte/electrode interfaces. A crucial parameter
in any realistic electrode process is the geometry of the interface, which often is
irregular. The problem of charge transport and diffusion across irregular interfaces
therefore has stimulated intense research, with applications in many branches of

heterogeneous chemistry [136] and biophysics [14].

A special process which can be analyzed successfully in terms of suitable network
equations, is the double-layer impedance at a rough electrode. Several experiments
have revealed an anomalous ac-impedance Z(w), governed by power-laws in a cer-
tain frequency-range. Effective exponents were found to depend on the degree of
roughness [137,138]. A simplified, two—dimensional network model due to Blender
et al. [139], which is adapted to these problems; is depicted in fig. 11. It ignores
any detailed electrochemical process within the atomic layers in the vicinity of the
interface but captures the essential geometrical effects on macroscopic scales. The
electrolyte is represented by real bulk conductance elements oy, capacitance effects

in the bulk being ignored, and is confined between a planar electrode Sy and a rough
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electrode S of the form of a hierarchical fractal. Successive stages N of the fractal
boundary are generated as indicated in the figure, yielding a quadratic Koch curve
with fractal dimension d; = In8/1In4. At stage N, the system size (for fixed smallest
length scale taken as unit length) is Ly = 4" the total length of the boundary S is
In = LC]l\{ = 8V, Each elementary segment of that boundary intersects one bond of
the underlying square lattice. With these bonds we associate interface conductance
elements o;. Their endpoints below the Koch curve are held at a fixed potential
® = 0, while ® = ®; x e~ on Sy. For an ideally blocking electrode we assume

0; = —iwC', where C' represents the double-layer capacitance per unit length.

Qualitatively, the overall N-dependent impedance Zy(w) will behave as follow.
For very high frequencies such that |o;| > 0, we can neglect the resistances o; *
so that the electrolyte effectively is in contact with a metallic electrode with po-
tential ® = 0. In this infinite—frequency limit the tips of the electrode S which are
closest to Sy will carry most of the current, while the pores are shielded. Lowering
the frequency, the equipotential lines will more and more be dragged in the pores.
Ultimately, as w — 0, we have |o;|ly < 0. Then the full voltage ®; drops to
zero across the interface so that Zy(w) ~ (o; Iy)~*. This discussion shows that the

equipotential lines explore the interfacial geometry in way that depends on w.

Before studying the discrete network of fig. 11 numerically, it is instructive to
formulate the corresponding boundary value problem for the electrostatic potential
®(7) in continuous space. Laplace’ equation A® = 0 is supplemented by boundary
conditions

O(F) =y, TS (82)

and
o (AVE(7) = 0,0(7); 7€ S (83)

The last equation with 77 a unit vector normal to S, exhibits two ways to express

the normal current density j, across S.

From a Green function representation of this problem [140] it is possible to derive
a high—frequency expansion of the impedance

-1

Z(w) = @ / jndo (84)

S

The two leading terms are given by
o Z(w) = ap — %al +O(z7?) (85)
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where 0;/0, = —ix with

x=wC/oy (86)
One can show that .
ag = O'b(I)() /]soda (87)
S
and
9
o= [Gpdo | [ gdo (38)
S S
where

j® = —o(AVD®(F); FTeS (89)

In these equations ®>°(7) denotes the electrostatic potential at infinite frequency,
which instead of (83) satisfies ®>°(7) = 0 for 7 € S. Notice that a; is the second
moment of the “harmonic measure” j°([ j2°do)~" of the fractal boundary S, whose

scaling with the system size L is determined by the multifractal exponent 7(2) = 7,
ap ~ L7 (90)

It turns out that the first—order expansion (85) together with (90) greatly facilitates
the interpretation of the subsequent numerical analysis. Clearly, the imaginary part
Im Zy of the network impedance at stage N, see fig. 11, is much more sensitive to
interfacial effects than the real part. Hence we focus on Im Zy, whose frequency—
dependence is shown in fig. 12. For N = 4, an “anomalous” regime can be identified,
where a power—law

ImZy ~w™ (91)

with n < 1 holds over about three decades. As indicated before, equating the to-
tal interfacial admittance with the bulk admittance, determines one characteristic

frequency wi satisfying w}Cly = o, or, by equation (86),

*

wt =1y =Ly (92)

Both for w < wi and w > 0,/C, we have Im Zy ~ w!. These w—dependencies,

including (91), suggest the scaling forms

—opIm Zy ~ ¢ (2 /2)" o K< (93)
/e 1<
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Actually, the w-independent coefficients are fully determined by using Im Zy ~
(wCly)~! for w < wi, see our above discussion, and by requiring continuity at the
two crossovers. So far, the exponent 7 remained undetermined. However, comparison
with (85) for z > 1 and (90) fixes 1. Since —opIm Zy ~ 7' (Ly)™" and (z%)~" =

LY, we have —oyIm Zy ~ z~'(x%)7/%, which yields

n=r7/dy (94)

This is the desired relationship between the dynamic exponent 1 and geometrical

properties of the interface.

In most cases 7 is near unity, so that n ~ 1/d;. Nevertheless, deviations from
this approximation are significant, as shown by H. Ruiz—Estrada et al. [115]. The
reason is that merely by the fractal dimension dy one does not distinguish between
protrusions and pores which, however, influence the impedance in different ways.
In particular, the ac-impedance at higher frequencies is governed predominantly by

the protrusions. Precisely this aspect is taken into account through the exponent 7.

The appearance of an exponent 7 < 1 in the scaling of the high—frequency
impedance with the system size, see the last relation in (93), has been verified

independently by numerical computations in Ref. [115] up to stage N = 5.

A fully analytical, albeit approximate approach has been devised within the
frame of position—space renormalization. Employing that method is suggested by
the hierarchical structure of the model in fig. 11. Results are consistent with (93).
An extended version of the method is able to reproduce the numerical data quan-
titatively, see the full curves in fig. 12. This implies a reliable calculation of the
exponent 7. Similar calculations, both numerical and by renormalization, were suc-
cessfully applied to boundaries of the type of fig. 11 but with a certain degree of

randomization [115].

The argument that leads to equation (94) in the case of a two-dimensional
electrolyte—electrode system, can easily be generalized to an arbitrary embedding
dimension d. If L denotes the system size (again for fixed smallest length scale
taken as unity) then the bulk and the interfacial admittances scale as o, L9 ? and
o; L% | respectively. Equating both quantities yields #* = w*C/oy, ~ L4 27% | instead
of (92). In the three frequency-regimes distinguished in (93) the (dimensionless)
impedance —o,Im Z now takes the form L=% /z for x < x*; (L= /2*)(x* /z)" for

r* < x < 1and (L% /z*) - 2*"/z for 1 < z. As before, the last expression must
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be equal to L~7/z. Thus we recover the result

T+2—d

T=d,+2-d

which was proposed earlier [143] and tested experimentally [144].
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Fig. 1: Time-dependent diffusion coefficient of Coulomb lattice gas models with
different plasma parameters I' (redrawn from [94]. (a) Ordered lattice with ' = 0
(0), 40 (A), and 80 (O); (b) Percolative disorder, with a fraction p = 0.4 of accessible
sitesand I' = 0 (o), 40 (A), and 80 (#). Data points are from Monte—Carlo simulation

and lines are fits according to eq. (46).
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Fig. 2: Dynamic conductivity of the counterion model at a concentration na® = 0.03
of Coulomb traps for different temperatures (redrawn from [95]). (a) real part o' (w);

(b) imaginary part ¢”(w). The straight lines have slope 1.
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Fig. 3: Illustration of different frequency regimes in the dynamic conductivity of the
counterion model at na® = 0.03 and V/kgT = 20 (redrawn from [96]). The two
intermediate regimes II and III pertain to “nearly constant loss” and Jonscher—type

behavior, respectively.
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Fig. 4: Spin-lattice relaxation rate T, ' as a function of the inverse temperature
(normalized quantities) of Coulomb lattice gas models (redrawn from [94]). (a) Or-
dered system, (b) highly correlated system (I' > 1) with percolative disorder, (¢)
disordered system in the absence of Coulomb correlations (I' = 0). Different symbols
refer to different Larmor frequencies w, covering one decade in each system. Details

on the choice of parameters are found in ref. [94].
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ordered system. Different symbols refer to different times, covering about a factor
20 for I' = 40 and a factor 70 for ' = 80. Details are found in ref. [94].
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Fig. 6: Normalized relaxation function, see equation (68), determining the ultrasonic
attenuation, computed for the counterion model for na® = 0.03 and different temper-
atures (redrawn from [104]). The inset shows an Arrhenius plot of the corresponding

relaxation time Tgyww.
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Fig. 7: Tllustration of the dipolar lattice gas model with na® = 1/64.
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Fig. 8: Dielectric loss spectra of the dipolar lattice gas (na® = 1/64) at different

temperatures.
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Fig. 9: (a) Schematic illustration of the microstructure in composite ionic conductors,
exemplified by the Lil/Al,O3 system. (b) Section of an associated three-component
random impedance network, displaying a highly conducting interface component
(thick lines) that intervenes between normal conducting (unshaded) and insulating

(shaded) regions.
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Fig. 10: Impedance diagram Z" versus Z' for the network depicted in Fig. 9 at p.,
and 7 = 10? (redrawn from [142]). The straight line has slope tan ¢.
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b)

Fig. 11: (a) Generator of a quadratic Koch curve and (b) impedance network asso-
ciated with a Koch—boundary at stage N = 2 between an electrolyte and an ideally
blocking electrode. Within the electrolyte, network bonds have a real conductance

op, while interfacial bonds (dotted) have conductances o; = —iwC.
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Fig. 12: Frequency—dependent imaginary part of the impedance in the model of Fig.
11 at increasing stages N. Full lines are from renormalization (redrawn from [115]).
The straight line is a fit of numerical data for N = 4 in the anomalous regime and

has slope —n, with n ~ 0.60.
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