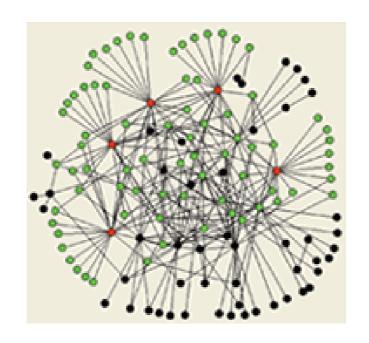
Anomalous Transport in Complex Networks



Shlomo Havlin

Reuven Cohen
Tomer Kalisky
Shay Carmi
Edoardo Lopez

Bar-

Gene Stanley

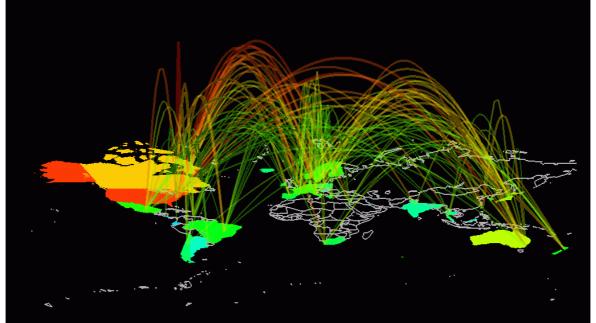
Bar-Ilan University

Boston University

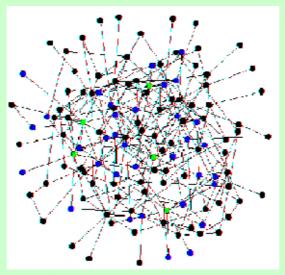
"Anomalous Transport in Scále-free Networks", López, et al, PRL (2005)

Important Function of Networks -- Transport

- a) Transport: emails, viruses over Internet, epidemics in social networks, passengers in airline networks, etc.
- b) Main past focus: studies of *static properties* of networks. Robustness, shortest paths, degree distribution, growth models, etc.
- c) No general theory of transport properties on networks. Some results-not yet a global picture.



Random Graph Theory

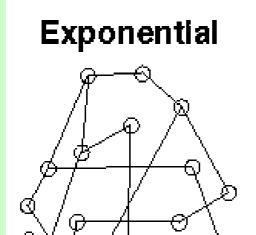


- Developed in the 1960's by Erdos and Renyi. (Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960).
- Discusses the ensemble of graphs with N vertices and M edges (2M links).
- Distribution of connectivity per vertex (degree distribution) is Poissonian (exponential), where k is the number of links:

$$P(k) = e^{-c} \frac{c^k}{k!}$$
, $c = \langle k \rangle = \frac{2M}{N}$; $p_c = 1 - 1/\langle k \rangle$; MF critical exponents

• Distance d=log N -- SMALL WORLD

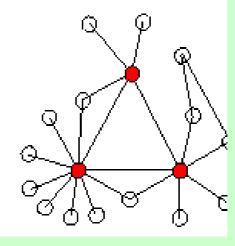
In Real World - Many Networks are non-Poissonian



$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

Erdos-Renyi (1960)

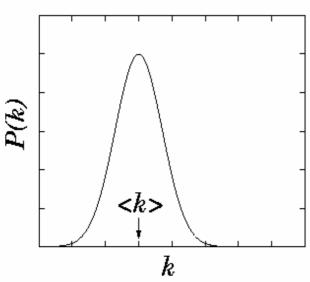
Scale-free



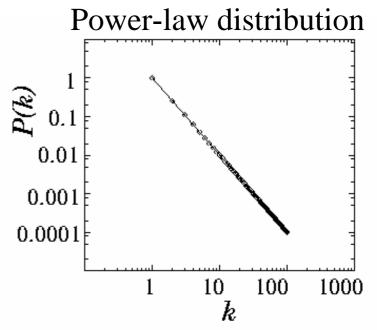
$$P(k) = \begin{cases} ck^{-\lambda} & m \le k \le K \\ 0 & otherwise \end{cases}$$

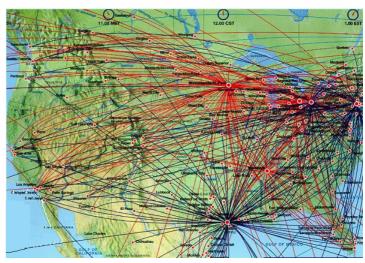
Barabasi-Albert (1999)

New Type of Networks



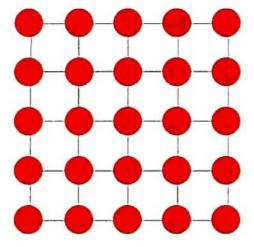
Exponential Network

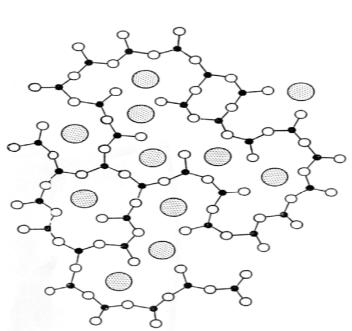


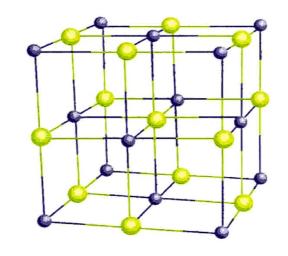


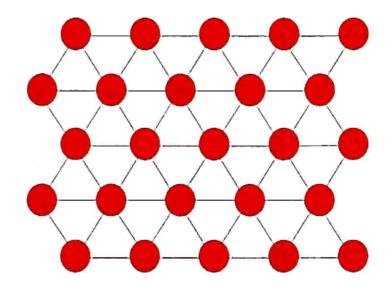
Scale-free Network

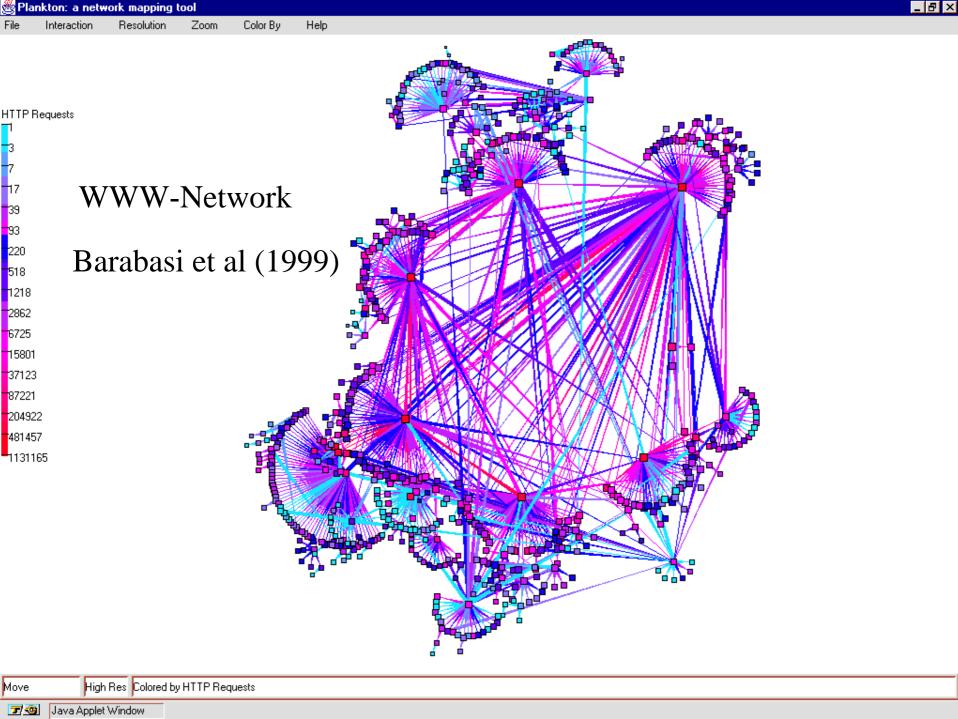
Networks in Physics











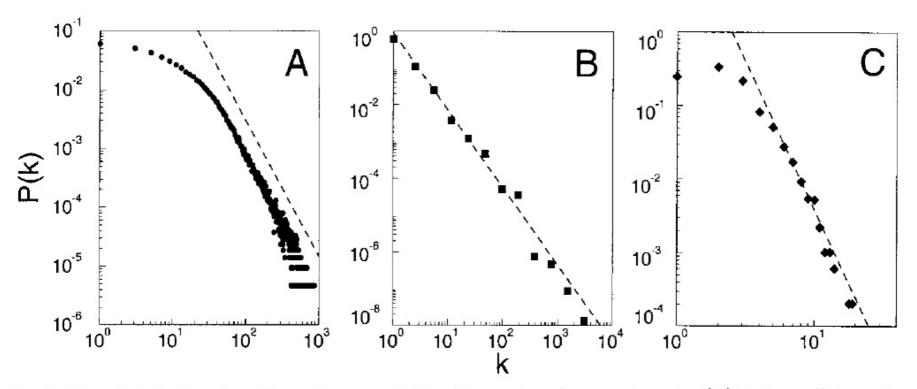
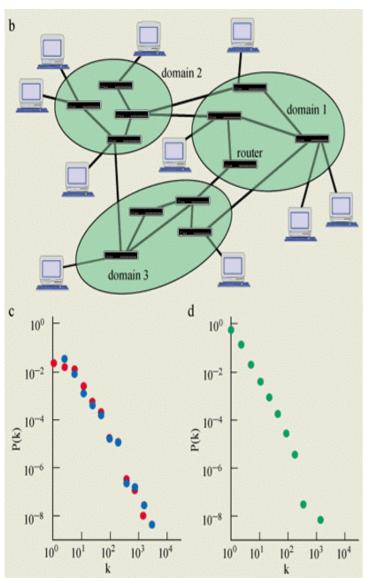


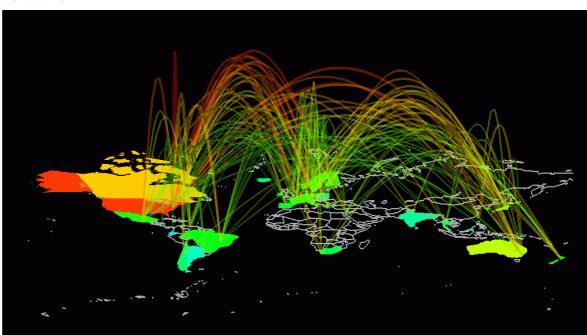
Fig. 1. The distribution function of connectivities for various large networks. **(A)** Actor collaboration graph with N=212,250 vertices and average connectivity $\langle k \rangle=28.78$. **(B)** WWW, N=325,729, $\langle k \rangle=5.46$ **(6)**. **(C)** Power grid data, N=4941, $\langle k \rangle=2.67$. The dashed lines have slopes (A) $\gamma_{\rm actor}=2.3$, (B) $\gamma_{\rm www}=2.1$ and (C) $\gamma_{\rm power}=4$.

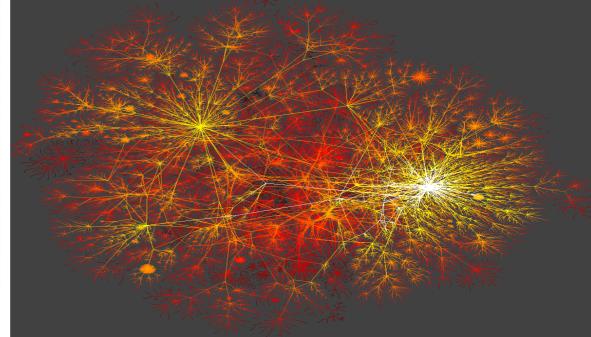
Barabasi and Albert Emergence of scaling in random networks Science 286, 509-512 (1999).

Internet Network

Faloutsos et. al., SIGCOMM '99



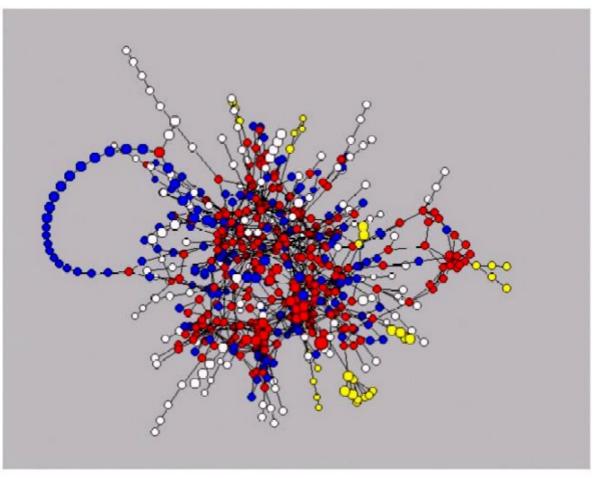




Metabolic Network

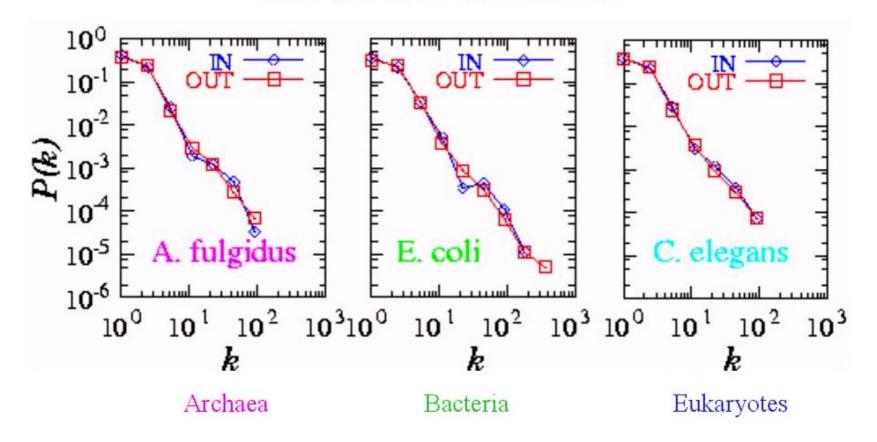
Nodes: chemicals (substrates)

Links: bio-chemical reactions



Jeong, Tombor, Albert, Barabasi, Nature (2000)

Metabolic network



Organisms from all three domains of life are scale-free networks!

Distance almost constant does not depend on N Jeong, Tombor, Albert, Barabasi, Nature (2000) Many Social networks are also found to be scale free

New models – based on preferential attachment (Barabasi, 2000) Anomalous Mean Distance in Scale Free Networks

$$P(k) \sim k^{-\lambda}$$

$$\ell = const. \qquad \lambda = 2$$
Ultra
Small
World
$$\ell = \frac{\log \log N}{\log \log N} \qquad 2 < \lambda < 3$$

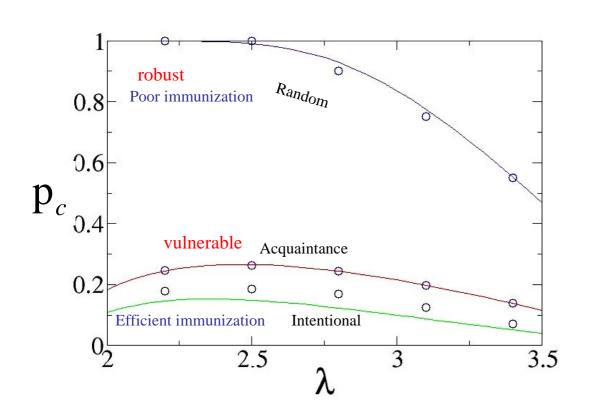
$$\ell = \frac{\log N}{\log \log N} \qquad \lambda = 3 \qquad \text{(Bollobas, Riordan, 2002)}$$
Small World
$$\ell = \log N \qquad \lambda > 3 \qquad \text{(Bollobas, 1985)} \tag{(Newman, 2001)}$$

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) Chap.4

Confirmed also by: Dorogovtsev et al (2003), Chung and Lu (2002)

More anomalies: Percolation on Scale Free



General result:

$$p_{c} = 1 - \frac{1}{K_{0} - 1}$$

$$K_{0} \equiv \frac{\langle k^{2} \rangle}{\langle k \rangle}$$

$$For \quad Poisson:$$

$$K_{0} = \frac{\langle k^{2} \rangle}{\langle k \rangle} = \frac{\langle k \rangle^{2} + \langle k \rangle}{\langle k \rangle}$$

$$p_{c} = 1 - \frac{1}{\langle k \rangle}$$

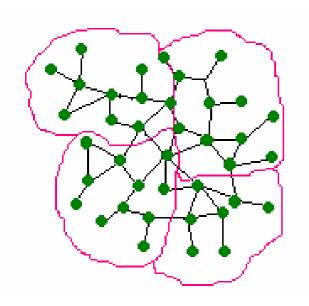
Cohen et al. Phys. Rev. Lett. 85, 4626 (2000); 86, 3682 (2001); 91, 168701 (2003)

Efficient Immunization
Strategie: Acquaintance
Immunization

SF new topology -> critical exponents are different and anomalous (not regular MF)!

THE UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY REACHED

Scale Free is **not** sufficient: Fractal and Non Fractal Networks **Box counting method**



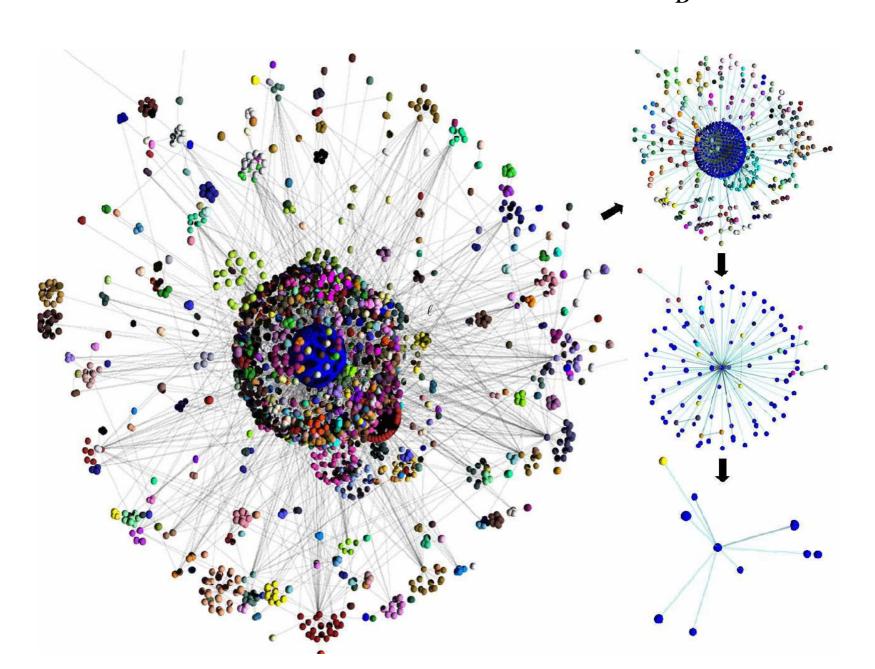
- \triangleright Generate boxes where all nodes are within a distance ℓ
- \triangleright Calculate number of boxes, $n(\ell)$, of size ℓ needed to cover the network
- ➤ We obtain for WWW, social networks, cellular networks, etc.

$$N_{\scriptscriptstyle R}(\ell)\,\square\,\,\ell^{-d_{\scriptscriptstyle B}}$$

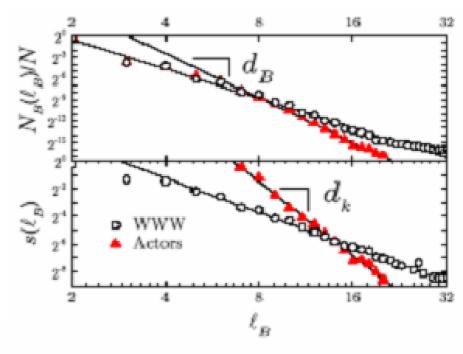
 $M_B \square N/N_B \sim \ell^{d_B} \stackrel{\circ}{=} 2 < d_B < 5 \implies \text{Self similarity}$

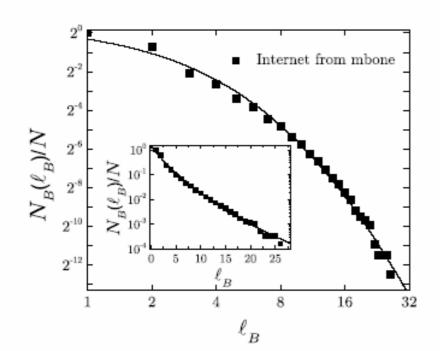
Chaoming Song, SH, Hernan Makse, Nature. 433, 392 (2005); cond-mat/0507216

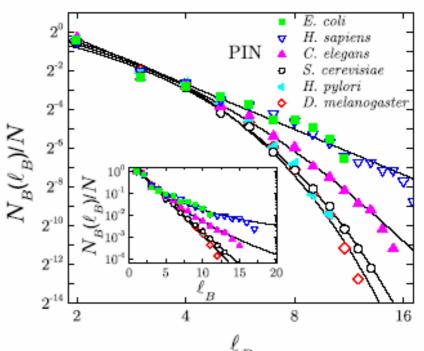
Renormalization of WWW network with $\ell_B = 3$



SOME REAL NETWORKS ARE FRACTALS AND SOME NOT!!





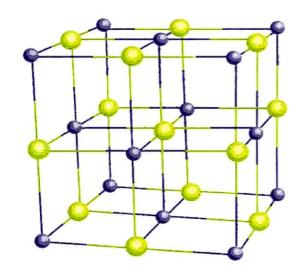


Important Function of Networks -- Transport

- a) Transport: emails, viruses over Internet, epidemics in social networks, passengers in airline networks, etc.
- b) Main past focus: studies of static properties of networks.
- c) No general theory of transport properties on networks. Some important results-not yet a global picture.

Transport in Complex Networks

Transport on regular networks and fractals:



$$\langle R^2 \rangle = Dt$$

$$\rho\,\square\,\,L^{2-d}$$

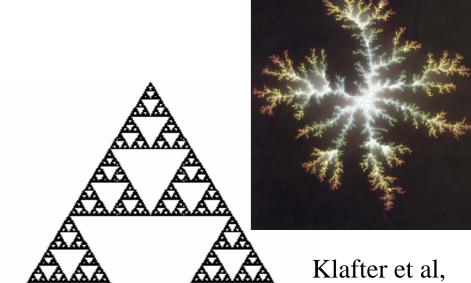
Anomalous transport

$$< R^2 > = At^{2/d_w}$$
 $\rho \Box L^{\zeta}; d_w = d_f + \zeta$
Einstein Relation

Bunde-Havlin, Fractals and Disordered Systems, Springer (1996)

Ben-avraham and SH,

Diffusion on Fractals and Disordered Systems, Cambridge Univ. Press (2000)



Levy walks $d_{w} < 2$

Transport in Complex Networks

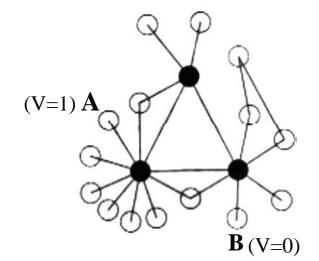
Some important results-not yet a global picture:

- 1. Bolt and ben-Avraham (NJOP, 2005): transit time faster as the SF network grows; walks are recurrent despite the infinite dimension.
- 2. Lasaros Gallos (PRE, 2004): super diffusion $<\ell^2> \square n^{2/d_w}$ with $d_w < 2$ depending on λ numerically.
- 3. Noh and Rieger (PRL, 2004): exact expression for MFPT, $p(\tau) \Box \tau^{-(2-\lambda)}$
- 4. Lopez et al (PRL, 2005): Broad distribution of conductances and diffusion constants (depending on degrees)— heterogeneous transport of SF networks

Anomalous Transport in Complex Networks

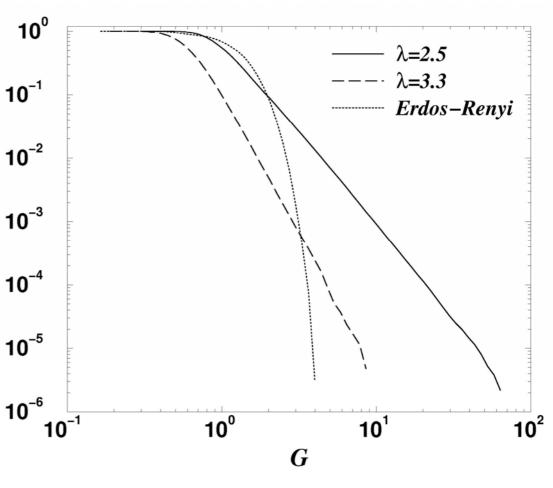
G – conductance between two nodes A and B

F(G) – cumulative distribution 10⁻²



each link unit resistor solving Kirchhoff Eqs•

G ~ D (Einstein relation)



Simulations- N=10,000

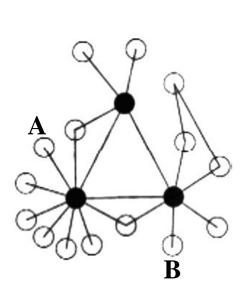
Power law tail

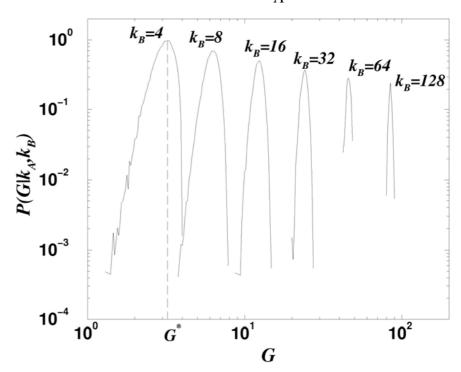
Scale free improve transport

Origin of power law?

$$\lambda = 2.5$$
, $k_A \ge 1000$

Strong correlations between conductance and degree of nodes



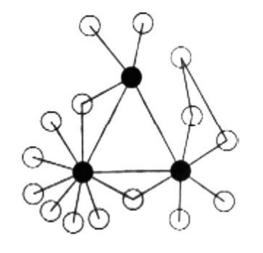


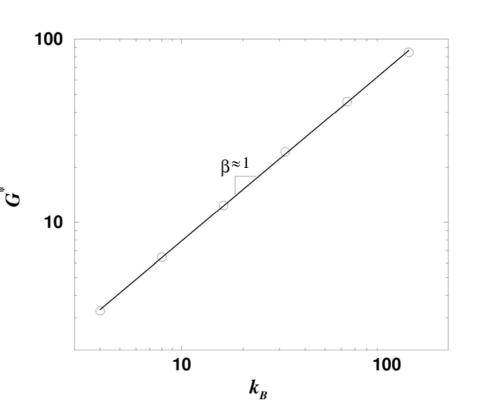
 $P(G | k_A, k_B)$ - distribution of G given k_A and k_B G^* - most probable conductance

- * Large k_A and k_B dominate the high conductance regime
- * Many parallel paths reduce dramatically the conductance

Origin of power law?

For large k_A $G^* \cong k_B$





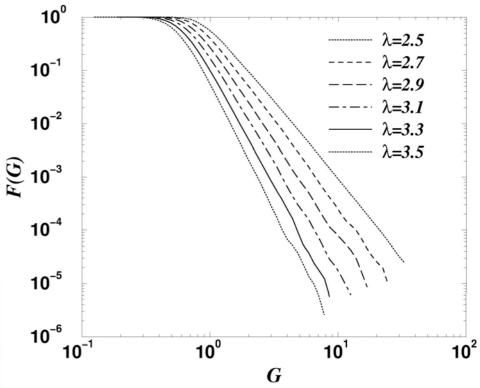
$$\Phi(G) = \Phi(k_B) = P(k_B) \int_{k_B}^{\infty} P(k_A) dk_A \approx k_B^{-2\lambda + 1}$$

Thus $\Phi(G) \propto G^{-g_G}$ where $g_G = 2\lambda - 1$ Supported by simulations

Simulations – scale free

F(G) =
$$\int_{G}^{\infty} \Phi(G)dG \propto G^{-g_G+1}$$

where $g_G = 2\lambda - 1$
4.7
4.2
3.7 slope $\approx 2\lambda - 2$
3.2
2.7
2.4 2.6 2.8 3.0 3.2 3.4



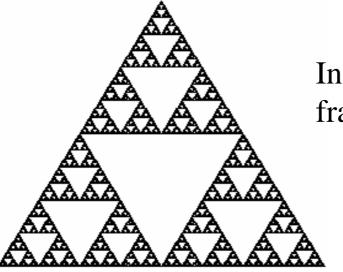
In good agreement with theory

E. Lopez et al, Anomalous transport in complex network, PRL (2005)

Scaling laws of resistance and diffusion for fractal and non-fractals SF networks

$$R(l; k_1, k_2) = l^{\xi} F(\frac{k_1}{l^{d_k}}, \frac{k_2}{l^{d_k}})$$

$$t_{walk}(l; k_1, k_2) = l^{d_w} D(\frac{k_1}{l^{d_k}}, \frac{k_2}{l^{d_k}})$$



In regular homogeneous fractals D and F are constants

Conclusions and Applications

Scale Free -
$$p(k) \square k^{-\lambda}$$
:

- * Anomalous properties- d=loglog N, diff. percolation
- * Rich topology: Fractal-Nonfractal real networks
- * Generalization of ER: $\lambda > 4$ ER, Infinite dimension, regular MF

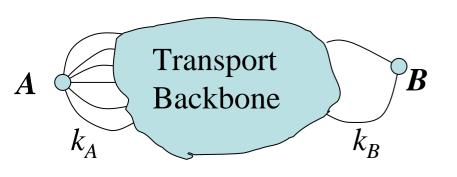
Anomalous Transport:

- * Broad distribution of diffusion constants or conductances
- * Heterogeneous {Dij} depending on nodes (i,j)-mainly on degreedue to heterogeneous topology.

Applications:

- * Optimize topology of networks against various types of failures
- * Optimize transport, searching and navigating in networks

Simple Physical Picture



• Network can be seen as series circuit.

- •Conductance G^* is related to node degrees k_A and k_B through a network dependent parameter c.
- •To first order (conductance of "transport backbone" >> ck_Ak_B)

$$G^* = c \frac{k_A k_B}{k_A + k_B}$$